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(ABSTRACT)

Investigation in discrete event simulation modeling methodology has persisted for over

thirty years. Fundamental is the recognition that the overriding objectives for simulation

must involve decision support. Rapidly advancing technology is today exerting major in-

fluences on the course of simulation in many areas, e.g. distributed interactive simulation

and parallel discrete event simulation, and evidence suggests that the role of decision sup-

port is being subjugated to accommodate new technologies and system-level constraints.

Two questions are addressed by this research: (1) can the existing theories of modeling

methodology contribute to these new types of simulation, and (2) how, if at all, should di-

rections of modeling methodological research be redefined to support the needs of advancing

technology.

Requirements for a next-generation modeling framework (NGMF) are proposed, and

a model development abstraction is defined to support the framework. The abstraction

identifies three levels of model representation: (1) modeler-generated specifications, (2)

transformed specifications, and (3) implementations. This hierarchy may be envisaged as

consisting of either a set of narrow-spectrum languages, or a single wide-spectrum language.

Existing formal approaches to discrete event simulation modeling are surveyed and evaluated

with respect to the NGMF requirements. All are found deficient in one or more areas.

The Conical Methodology (CM), in conjunction with the Condition Specification (CS), is

identified as a possible NGMF candidate. Initial assessment of the CS relative to the model

development abstraction indicates that the CS is most suited for the middle level of the

hierarchy of representations – specifically functioning as a form for analysis.

The CS is extended to provide wide-spectrum support throughout the entire hierarchy

via revisions of its supportive facilities for both model representation and model execu-

tion. Evaluation of the pertinent model representation concepts is accomplished through a

complete development of four models. The collection of primitives for the CS is extended

to support CM facilities for set definition. A higher-level form for the report specification

is defined, and the concept of an augmented specification is outlined whereby the object



specification and transition specification may be automatically transformed to include the

objects, attributes and actions necessary to provide statistics gathering. An experiment

specification is also proposed to capture details, e.g. the condition for the start of steady

state, necessary to produce an experimental model.

In order to provide support for model implementation, the semantic rules for the CS are

refined. Based on a model of computation provided by the action cluster incidence graph

(ACIG), an implementation structure referred to as a direct execution of action clusters

(DEAC) simulation is defined. A DEAC simulation is simply an execution of an augmented

CS transition specification. Two algorithms for DEAC simulations are presented.

Support for parallelizing model execution is also investigated. Parallel discrete event

simulation (PDES) is presented as a case study. PDES research is evaluated from the

modeling methodological perspective espoused by this effort, and differences are noted in

two areas: (1) the enunciation of the relationship between simulation and decision support,

and the guidance provided by the life cycle in this context, and (2) the focus of the devel-

opment effort. Recommendations are made for PDES research to be reconciled with the

“mainstream” of DES.

The capability of incorporating parallel execution within the CM/CS approach is inves-

tigated. A new characterization of inherent parallelism is given, based on the time and state

relationships identified in prior research. Two types of inherent parallelism are described:

(1) inherent event parallelism, which relates to the independence of attribute value changes

that occur during a given instant, and (2) inherent activity parallelism, which relates to

the independence of attribute value changes that occur over all instants of a given model

execution. An analogy between an ACIG and a Petri net is described, and a synchronous

model of parallel execution is developed based on this analogy. Revised definitions for the

concepts time ambiguity and state ambiguity in a CS are developed, and a necessary condi-

tion for state ambiguity is formulated. A critical path algorithm for parallel direct execution

of action clusters (PDEAC) simulations is constructed. The algorithm is an augmentation

of the standard DEAC algorithm and computes the synchronous critical path for a given

model representation. Finally, a PDEAC algorithm is described.
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Chapter 1

INTRODUCTION

Those who can, do. Those who can’t, simulate.

Anonymous

As the decade of the 1990s nears its midpoint, computer simulation – particularly dis-

crete event simulation (DES) – is a well studied and widely utilized problem-solving tech-

nique. In the over fifty years since its inception on digital computers, a truly substantial

body of literature in discrete event simulation has evolved (see [56, 121, 159, 229, 232] for

historical perspectives on discrete event simulation). Much of this history demonstrates

that modeling methodology, which defines a theory of models and the modeling process and

their relationship to decision support, is central to the efficacy of simulation. Of particular

significance in this area has been work in time flow mechanisms (see [56, 122, 152]), concep-

tual frameworks (see [65, 121]), simulation programming languages (see [159]), statistical

analysis (see [17, 55, 240]), and model life cycles (see [181]).

Recently, technological advances have enabled discrete event simulation to be utilized

in contexts barely conceivable only a few years ago: simulation is now being targeted for

execution on distributed networks, and multiprocessors, as well as sequential architectures.

Simulation is no longer simply a tool for “analysis” per se; simulation in the 1990s is

expected to provide support for a wide variety of purposes including, training, interaction,

visualization, hardware testing, and decision support in real-time, just to name a few. At

first glance, it would appear that these new approaches for simulation are so advanced

that techniques developed two and three decades ago could not possibly be of any use, and

that to take full advantage of these new technologies, our modeling approaches must be
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fundamentally altered. Evidence suggests that many ongoing research efforts adopt this

view. But is this perspective the correct one?

The research described here addresses the modeling methodological implications of the

coming of a “new age” for discrete event simulation. The investigation treats discrete event

simulation at its most fundamental level as a tool for decision support. Based on this

observation, and other fundamental characteristics of discrete event simulation, the ques-

tion is posed: “Is the existing knowledge base in modeling methodology wholly inadequate

to accommodate new technologies and contexts for discrete event simulation, or has there

simply been a failure to recognize and properly exploit over 30 years of modeling method-

ology investigation?” The answer to this question is both yes, and no. Many of the new

contexts for simulation challenge our knowledge base in modeling methodology. Still, if

the fundamental nature of simulation as a decision support tool persists, existing modeling

methodological investigation should provide a framework within which new techniques and

system-level requirements can be accommodated.

1.1 Problem Definition

Discrete event simulation is in the midst of what could justifiably be referred to as a

revolution. A mere two decades ago, the typical simulation study could be easily described:

it involved systems analysis using a single model generated by a relatively small group of

modelers, analysts, users, and decision makers. Today, no such description can be given.

Discrete event simulation models may adopt myriad forms:

• A single, large, relatively static model that serves over a protracted period of use, e.g.
a weather simulation.

• A single model which evolves rapidly during experimentation for system design or
optimization, e.g. a cache model.

• A model which consists of a synthesis of results from several existing models in an
effort to answer questions on a metasystem level.

• Models used for analysis.

• Models used to animate and visualize systems.

• Models used to provide an interactive training environment.

• Models used to stimulate hardware prior to operational deployment.

2
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• Models used for real-time decision support.

• Models which provide various combinations of the above.

Furthermore, these models may be developed by groups distributed throughout a company,

or across continents. Model analysis may be the purview of an entirely separate group or

groups. And the model users may represent yet another diverse collective.

This revolution is the progeny of two factors: (1) advances in computing technology,

which have made many of these approaches computationally feasible, and (2) restricted

budgets and the affordability of computer hardware and processor time which makes simu-

lation potentially very cost-effective. To illustrate this point, consider the increasing reliance

on (and diversity of) simulation within the U.S. military.1 According to the 1992 Defense

Modeling and Simulation Initiative (DMSI) [64]:

. . .the United States today faces great uncertainty due to a rapidly changing
world. New conflict scenarios visualizing operations at any large number of
locations worldwide, at varying levels of conflict, and in conjunction with new
weapon systems will lead to the development of new operational concepts. Mod-
eling and simulation, drawing on existing and new technology, must be able to
support test and validation of these concepts, provide the means for war fighting
rehearsals and preparation of forces, and allow commanders and their staffs to
design, assess, and visualize the simulated consequences of execution of their
campaign plans. Similarly, modeling and simulation must be prepared to sup-
port all phases of the acquisition process that will be used to provide the new
and upgraded weapon systems for employment in these potential future con-
flicts. Finally, in light of the constrained budgets, the modeling and simulation
community will have to be more resourceful with available assets and, at the
same time, be ready to respond to an increased demand for its services.

At the highest levels within the military, simulation is seen as the answer to declining

budgets in the post-Cold War era. The call has been made to do more with simulation and,

if possible, do it in the context of a single development effort. For example, projects such as

the Navy’s Multiwarfare Assessment and Research System (MARS) (see [165]) are designed

to support both acquisition and training through the distributed interactive simulation

(DIS) protocol [110], as well as providing a forum for the integration of extant models to

enable multiple fidelity, multiple force-level analysis.

1As cited in [237, p. 129], Market Intelligence Research Corporation estimates U.S. military revenues in
the simulation market to have been around $2.5 billion in 1989 and $2.7 billion in 1993. With an estimated
percentage growth increasing from 2.5% in 1993 to 6.7% in 1999, the projected revenues for U.S. military
simulation in 1999 are $3.7 billion.
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This revolution in simulation, and the fact that technology is today exerting major

influences on the course of simulation research in many areas, provides the motivation for

this research effort, which may be stated as follows:

The cost-effective application of simulation in any context hinges fundamentally
on the underlying principles of model development, and model representation,
and the precepts of the supporting methodology.

1.2 Thesis Objectives

This research seeks to identify an answer to a central question of discrete event simulation

modeling methodology:

What is the nature of the ideal framework for simulation model development
where the models may be used for a wide variety of purposes, and implemented
on varying architectures?

Obviously, a direct answer to this fundamental question cannot be realistically formulated

within the very limited scope of a doctoral dissertation; indeed an ideal framework may be

incapable of definition. Our aim is to identify the challenges new technologies have brought

to simulation modeling methodology and to describe a modeling framework based on the

fundamental recognition that the overriding objective of any simulation is making a correct

“decision” (although the decision may take many forms). To focus the development of

concepts, parallel discrete event simulation (PDES) is presented as a case study – contrasting

the prevalent PDES approaches with the framework suggested here. Thus, two specific

objectives are identified for this research:

1. Identify an extensible framework for model development which permits the integration
of emerging technologies and approaches, and demonstrate its feasibility using an
existing methodology and representation form(s).

2. Recognize a potential problem with the focus of parallel discrete event simulation
research, and demonstrate how the framework described above may be utilized to
cost-effectively incorporate parallel execution within the discrete event simulation life
cycle.

1.3 Thesis Approach

At the core of this research is a familiar message: with very few exceptions, research

in any area should be conducted while “standing on the shoulders” of those that have
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preceded us. Accordingly, the approach taken relies heavily on the years of research that

comprise the Simulation Model Development Environment Project (see [21]). The Conical

Methodology [155, 158, 160] and the Condition Specification [178] play central roles. The

tasks defined to meet the stated objectives are the following.

Describe a simulation model development philosophy. Frame the context of this research

effort by describing a philosophy of simulation model development in which the role of

decision support takes a preeminent position.

Identify a set of criteria for a next-generation modeling framework. Using the discrete

event simulation modeling methodology literature as a basis, identify criteria for a next-

generation modeling framework.

Define a model development abstraction to support the framework. Based on the philosophy

described above and the identified requirements for a next-generation modeling framework,

define a “model of model development,” or model development abstraction, consistent with

the discrete event simulation model life cycle and suitable to permit the integration of new

technologies and system-level requirements.

Survey the formal approaches to discrete event simulation model development. Formal de-

scriptions of models and model behavior are required to realize the requisite level of au-

tomatability in the envisaged modeling framework. Survey the existing formal approaches

to discrete event simulation model development and evaluate each according to the criteria

identified above.

Evaluate the Condition Specification. Through the development of several example mod-

els, evaluate the Condition Specification (CS) relative to the Conical Methodology (CM).

Extend the representational facilities of the CS, as necessary, to fully and effectively support

the CM provisions for model development.

Evaluate methods for generating a Condition Specification. Evaluate the extant methods

for automated assistance in the generation of a CS. Using the development of examples

5
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given above as a reference point, identify needed improvements or alternative methods for

generating a CS.

Define algorithms for directly executing a Condition Specification. Investigate the graph

representations provided by the Condition Specification to determine if a model of compu-

tation may be defined based upon the direct execution of these graphs. Define algorithms

for for the direct execution of a CS suitable for sequential architectures.

Define model analysis and algorithms to support direct execution of Condition Specifications

on a multiprocessor. Define methods to assess the “inherent” parallelism within a CS

representation. Define procedures to map a CS onto a multiprocessor, and define algorithms

for execution such that the inherent parallelism may be exploited.

Examine parallel discrete event simulation from a modeling methodological perspective. Par-

allel discrete event simulation (PDES) research has persisted nearly 15 years, and yet PDES

has failed to make a significant impact within the general discrete event simulation commu-

nity. Examine PDES from a modeling methodological perspective and identify any potential

problems. Based on the philosophy guiding this research, suggest possible solutions.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 provides definitions for

the discrete event simulation terminology used throughout this work.

The guiding philosophy of this research is presented in Chapter 3. The philosophy

is based upon the rich history of discrete event simulation modeling methodology. The

concepts of life cycle, paradigm, methodology, method and task are reviewed, and a life cycle

model for a simulation study suggested by Nance and Balci is described. The Simulation

Model Development Environment, which represents a realization of this philosophy is also

discussed. The framework for model development underlying the SMDE is abstracted into a

form suitable to permit the integration of new technologies and system-level requirements.

This type of framework is described as a “next-generation modeling framework.” Based
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on the independent observations of Nance and Sargent, an evaluative criteria for a next-

generation modeling framework is developed.

A survey of formal approaches to discrete event simulation model development appears

in Chapter 4. These approaches are evaluated with respect to the criteria identified in

Chapter 3.

The Conical Methodology and the Condition Specification, which provide the foundation

for remainder of the thesis, are described in Chapter 5. The Condition Specification is

analyzed regarding its support for model representation relative to the provisions and tenets

of the CM in Chapter 6. The analysis is accomplished through detailed development of a

collection of example models.

Methods for generating a Condition Specification are surveyed in Chapter 7. Based on

observations from Chapter 6, new methods are proposed.

Chapter 8 defines a model of computation based on graph forms of the CS. The CS

semantics are reformulated to support this model of computation, and algorithms for (se-

quential) execution of these graph forms are presented. The provisions for model analysis

in the CS are reviewed in terms of the language extensions (Chapter 6) and redefined

semantics.

Issues involving the execution of a simulation model in a parallel processing environment

are described in Chapter 9. The research comprising the field of parallel discrete event simu-

lation (PDES) is briefly surveyed, and PDES is examined from the modeling methodological

perspective adopted by this research effort. Prospects for supporting parallel execution in

the CS are investigated. The concept of “inherent parallelism” is defined and a critical path

algorithm constructed such that the inherent parallelism in a CS model representation may

be identified. Finally, an algorithm for the direct parallel execution of a CS is given.

A summary and evaluation of the research, along with an identification of future research

needs, appears in Chapter 10.

1.5 Summary of Results

The primary contributions of this effort may be assessed in relationship to: (1) modeling

methodology, and (2) parallel discrete event simulation.

7



CHAPTER 1. INTRODUCTION

1.5.1 Modeling methodology

The contributions of this research to discrete event simulation modeling methodology

are identified as follows.

Requirements for a Next-Generation Modeling Framework. In a 1977 report, Nance identi-

fies six criteria for a simulation model specification and documentation language. Sargent,

in a 1992 conference paper, offers fourteen requirements for a modeling paradigm. These

two sets of criteria are reconciled to produce a list of ten requirements for a next-generation

modeling framework.

Critical evaluation of formal approaches to discrete event simulation. In Chapter 4, a

survey of formal methods for developing discrete event simulation models is undertaken. The

approaches surveyed are Lackner’s Calculus of Change, the systems theoretical approaches

including DEVS and the system entity structure, activity cycle diagrams, event graphs,

simulation graphs, control flow graphs, Petri net approaches, logic-based approaches, and

generalized semi-Markov processes. Also discussed are current efforts to formalize important

modeling concepts such as abstraction and hierarchy. The approaches are evaluated based

on proposed criteria for next-generation modeling frameworks. The evaluation reveals that

all the extant approaches are deficient in one or more respects. The observation is made

that a methodology-representation synergism is lacking.

Rigorous investigation of the Condition Specification. This effort represents the first ex-

tensive application of the CS since its original definition. Subsequent to its development by

Overstreet in 1982, the CS has been investigated piecewise: some efforts examining analysis

using the CS, other research examining methods to coerce a CS from a modeler. In this

thesis, the CS is thoroughly, and holistically exercised. In terms of the hierarchy of repre-

sentations described in Chapter 3, the CS fits naturally into the middle level. The tasks

comprising this effort widen the spectrum of the CS, such that it provides support for both

the higher and lower levels of model representation. This widened spectrum is achieved

without sacrificing the utility of the language at the middle level.

In Chapter 6, the CS is evaluated in terms of the provisions and tenets of the Conical

Methodology. Although the CS has long been adopted as the primary specification form

8
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for the CM, the efforts of Chapter 6 uncover and resolve several “disconnects” between the

representational provisions of the language, and the tenets underlying the methodology.

Support for implementation is derived from utilizing the action cluster incidence graph

as a model of computation. Based on this model of computation, the CS semantics are

reformulated in Chapter 8. Algorithms for direct (sequential) execution of a CS are also

presented. A claim of architecture independence results from the developments in Chapter 9.

Through the characterization of inherent parallelism, and a model for (synchronous) parallel

execution of a CS, methods are defined such that a model developed in the CS – solely with

regard to a natural description of the underlying system, to facilitate the establishment of

model correctness – may be executed in a parallel processing environment.

1.5.2 Parallel discrete event simulation

The contribution of this research to the field of parallel discrete event simulation is

identified as follows.

Critique of current approach based on a new perspective. In Chapter 9, parallel discrete

event simulation (PDES) research is evaluated from the modeling methodological perspec-

tive identified in Chapter 3. Differences are evident in two areas: (1) the enunciation of the

relationship between simulation and decision support, and the guidance provided by the life

cycle in this context, and (2) the focus of the development effort. Four recommendations

are made for PDES research to be reconciled with the “mainstream” of DES: (1) return

the focus of the development effort to the model, (2) formulate examples with enunciation

of simulation study objectives, (3) examine methods to extract speedup in terms of the

particular model development approach and envisaged model purpose, and (4) examine the

relationship of speedup to software quality.
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Chapter 2

DISCRETE EVENT SIMULATION TERMINOLOGY

You can measure distance by time.
“How far away is that place?”
“About 20 minutes.”

But it doesn’t work the other way.
“When do you get off work?”
“About three miles.”

Jerry Seinfeld, SeinLanguage

A common occurrence in disciplines that are at the center of widespread, multifaceted

research by individuals with varied interests and backgrounds, is the slow development of

a standard terminological system. Such has been the case in discrete event simulation.

Nance [156] discusses some precipitate causes of this lack of a “common language of dis-

course” and proposes a set of definitions based on the fundamental relationship between

time and state in a discrete event simulation. The definitions presented here conform to

the premise advanced by Nance and have, over the past fifteen years, begun to gain general

recognition within the discrete event simulation community.

According to Shannon [215], digital computer simulation is the process of designing

a model of a real system and conducting experiments with this model on a digital computer

for a specific purpose of experimentation. Based on the taxonomy given in [159], digital

computer simulation may be divided into three categories: (1)Monte Carlo, (2) continu-

ous, and (3) discrete event. Monte Carlo simulation is a method by which an inherently

non-probabilistic problem is solved by a stochastic process; the explicit representation of

time is not required. In a continuous simulation, the variables within the simulation are

continuous functions, e.g. a system of differential equations. If value changes to program

10
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variables occur at precise points in simulation time (i.e. the variables are “piecewise linear”),

the simulation is discrete event. Nance [159] notes that three related forms of simulation are

commonly used in the literature. A combined simulation refers generally to a simulation

that has both discrete event and continuous components.1 Hybrid simulation refers to the

use of an analytical submodel within a discrete event model. Finally, gaming can have

discrete event, continuous, and/or Monte Carlo modeling components. The focus of this

thesis is limited to discrete event simulation.

As noted, a simulation involves modeling a system. Adopted here is the definition

contained in the Delta project report [102, p. 15]:

A system is a part of the world which we choose to regard as a whole, separated
from the rest of the world for some period of consideration, a whole which we
choose to consider as containing a collection of components, each characterized
by a selected set of data items and patterns, and by actions which may involve
itself [a component] and other components.

The system may be real or imagined and may receive input from, and/or produce output

for, its environment.

A model is an abstraction of a system intended to replicate some properties of that

system [178, p. 44]. The collection of properties the model is intended to replicate (for

the purpose of providing answers to specific questions about the system) must include the

modeling objective. The importance of the modeling objective cannot be overstated; a

proper formulation of the objective is essential to any successful simulation study. Only

through the objective can meaning be assigned to any given simulation program. Since by

definition a model is an abstraction, details exist in the system that do not have representa-

tion in the model. In order to justify the level of abstraction, the model assumptions must

be reconciled with the modeling objective.

According to Nance [156, p. 175], a model is comprised of objects and the relationships

among objects. An object is anything characterized by one or more attributes to which

values are assigned. The values assigned to attributes may conform to an attribute typing

similar to that of conventional high level programming languages.

1Typically, a discrete event submodel is encapsulated within a continuous model.
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Within a discrete event simulation, the two concepts of time and state are of paramount

importance. Nance [156, p. 176] identifies the following primitives which permit precise

delineation of the relationship between these fundamental concepts:

• An instant is a value of system time at which the value of at least one attribute of
an object can be altered.

• An interval is the duration between two successive instants.

• A span is the contiguous succession of one or more intervals.

• The state of an object is the enumeration of all attribute values of that object at a
particular instant.

These definitions provide the basis for some widely used (and, historically, just as widely

misused) simulation concepts [156, p. 176]:

• An activity is the state of an object over an interval.

• An event is a change in an object state, occurring at an instant, and initiates an
activity precluded prior to that instant. An event is said to be determined if the
only condition on event occurrence can be expressed strictly as a function of time.
Otherwise, the event is contingent.

• An object activity is the state of an object between two events describing successive
state changes for that object.

• A process is the succession of states of an object over a span (or the contiguous
succession of one or more activities).

These concepts may be viewed as illustrated in Figure 2.1. Keep in mind that an activity for

an object is bounded by two successive events for that object [156, p. 176]. Event, activity

and process form the basis of three primary conceptual frameworks (world views)

within discrete event simulation.

• In an event scheduling world view, the modeler identifies when actions are to occur
in a model.

• In an activity scanning world view, the modeler identifies why actions are to occur
in a model.

• In a process interaction world view, the modeler identifies the components of a
model and describes the sequence of actions of each one.

In his thesis, Derrick [65] classifies these and other conceptual frameworks for simulation

modeling, discussing the relative strengths and weaknesses of each regarding their influence

on model development.
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time
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� Activity -

Figure 2.1: Illustration of Event, Activity and Process.

To briefly summarize, modeling is the process of describing a system – producing a model

of that system – with the goal of experimenting with that model to gain some insight into

the behavior of the system. The model itself is a collection of interacting objects, these

objects being described by attributes. This last assertion should not go unqualified. An

object-based view of a model is not the only possible description of a system. For example,

a system may be modeled as a set of functions that act on streams of input to produce

output (e.g. [99]), or as a set of data structures (e.g. [111]) with some prescribed behavior.

A gamut of perspectives has been utilized with varied success within the field of software

engineering. Within discrete event simulation, models have been organized along temporal

and state – as well as object – lines (the definitions of the traditional conceptual frameworks

need not necessarily contain an explicit notion of object). It may be fairly argued then that

not all systems of interest are composed of clearly identifiable objects. For example, in a

model of the decision making process, is intuition an object? Still, most systems do admit

a well-defined object-based classification, and so these definitions – while perhaps not ideal

– are widely applicable. Finally, any method of description must contain a set of attributes

whose value changes describe the lifetime of the model. And an object-based description

would seem to provide the best available means of organizing these attributes.
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Chapter 3

A PHILOSOPHY OF MODEL DEVELOPMENT

But there is yet another consideration which is more philo-
sophical and architectonic in character; namely to grasp the
idea of the whole correctly and thence to view all . . .parts in
their mutual relations . . .

Immanuel Kant, Critique of Practical Reason

In this chapter, a philosophy of simulation model development is described. The philoso-

phy is based on a singular tenet: the primary function of discrete event simulation involves

decision support. The philosophy stipulates that this fundamental characteristic persists

even in the face of new technologies and applications, and that any failure to recognize

this basic fact is a failure to address simulation in its total context. Of course, the role of

philosophic discussion in scientific endeavors is a subject of some debate. As the existential

philosopher Karl Jaspers observes [112, p. 7]:

What philosophy is and how much it is worth are matters of controversy. One
may expect it to yield extraordinary revelations or one may view it with in-
difference as a thinking in the void. One may look upon it with awe as the
meaningful endeavor of exceptional men or despise it as the superfluous brood-
ings of dreamers. One may take the attitude that it is the concern of all men,
and hence must be basically simple and intelligible, or one may think of it as
hopelessly difficult. . . .For the scientific-minded, the worst aspect of philosophy
is that it produces no universally valid results; it provides nothing we can know
and thus possess.

The veracity and merit of a philosophical position, such as outlined in this chapter, is not

readily demonstrable. Some elements of the following discussion may be either accepted

or dismissed, as matters of “faith.” On the other hand, philosophies of simulation model

development can be empirically evaluated, albeit indirectly and over a perhaps considerable
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period of time. The products, in this case simulation models and studies, in their degrees

of success or failure reflect the credibility of the philosophy underlying each. Accordingly,

what is described here, while perhaps at times taking an almost evangelical tone, can – and

is – being validated by ongoing practice of simulation model development.

3.1 A Modeling Methodological View of Discrete Event Simulation

In Chapter 1, modeling methodology is characterized as illuminating the nature of mod-

els and the modeling process. The primary role of modeling methodological research is to

identify how simulation models should be constructed and used so that simulation is cost-

effective as a problem-solving technique. The importance of modeling methodology within

the field of discrete event simulation is evidenced by its prominence within the preeminent

DES conferences and journals, such as, respectively, the Winter Simulation Conference, and

the Transactions on Modeling and Computer Simulation, published by the Association for

Computing Machinery. The precepts that comprise the “modeling methodological view”

stem from a basic recognition of the nature of simulation.

3.1.1 What is simulation?

To understand fully the role of modeling methodology, one question must be addressed,

what is a simulation? Any number of definitions can be gleaned from a variety of distin-

guished texts (see [72, 76, 126, 215]). The definition advanced by Shannon [215] is given in

Chapter 2, but for purposes of this discussion simulation may be regarded simply as:

The use of a mathematical/logical model as an experimental vehicle to answer
questions about a referent system.

This definition seems to be efficient in the use of words and careful not to presume certain

conditions or implicit purposes. For example, computer simulation is not mandated; the

model could follow either discrete event or continuous forms; the answers might not be

correct; and the system could exist or be envisioned.

Essentially, a simulation provides the basis for making some decision – this decision

being based on the “answers” provided by the simulation. The relative importance of

the decision, once made, and the subsequent action (or inaction) taken as a result of the

decision are myriad. Often, the simulation provides an assessment of some system which is
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not readily amenable to other types of analysis; thus the simulation provides the only means

by which to assess a given situation. The ramifications of making an incorrect simulation-

based decision can range from a mere nuisance, to loss of investment, to more catastrophic

consequences such as the loss of lives. Therefore,

arriving at the correct decision is the overriding objective of simulation.

One may want a simulation to provide a variety of behaviors and possess a multitude of

characteristics, but none of these should be achieved at the expense of a correct decision.

3.1.2 Enhancing decision support through model quality management

While computer architecture and compiler design technology have often driven model

development in terms of how a simulation model can be constructed, modeling methodology

has focused on the question of how a simulation model should be constructed. Investigation

in modeling methodology has persisted some 35 years, beginning with the General Simula-

tion Program of Tocher in 1958 (see [231, 232]), and continuing in the writings of Lackner

[124, 125], Kiviat [120, 121], Nance [152, 155, 156, 158, 160], and Zeigler [250, 251, 252], to

cite the most prominent. The lessons of this history identify several factors that are pos-

itively correlated with the probability of making a correct decision. These factors include

(but are by no means limited to):

1. An adequate understanding of the problem to be solved. If the problem to be solved
is not well-defined and manageable, then little hope exists that a solution to the
problem is readily forthcoming. (This is fundamental to every known problem-solving
technique and certainly not unique to simulation.)

2. An error-free model. The correctness of the model is paramount to a cost-effective so-
lution in light of the overall objective. Errors induced in the model, if never detected,
could lead to the acceptance of results based on an invalid model – a potentially disas-
trous action. If an error is detected, but its detection comes late in the development
stream, the cost of correction involves the cost of correcting the model and repeat-
ing the development steps. To be cost-effective, the methods for model development
should foster the initial development of correct (error-free) models.

3. An error-free program. Recognizing that the program is but one representation of
a model – usually the last in a line of development, a correct program can only be
generated from a correct model. The arguments for program correctness mirror those
for model correctness.

4. Experiment design. Construction of the model and program must reflect the objectives
in carrying out the simulation; the right questions must be asked of the program in
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order that the appropriate answers can be derived. The problem understanding must
be sufficient and the model and program designed to facilitate the experiment design
process.

5. Interpretation of results. A key recognition here is that no simulation program ever
built produced the answer to anything. Typically, simulation output measures are
observations of random variables, and a proficiency in statistical methods, including
variance reduction and multivariate analysis, is required to successfully – and correctly
– interpret the results provided by a simulation.

These observations establish that simulation involves more than merely a program.

Only with careful attention to all of the factors identified above can the overall objective of

simulation, a correct decision, be consistently achieved. With this recognition, considerable

effort has been undertaken to impose a management structure onto the framework of using

simulation as a problem-solving technique. Perhaps of greatest significance in this area has

been the development of life-cycle models for simulation. A life-cycle model of a simulation

study, proposed by Nance and Balci, is presented below. We preface the presentation with

a brief discussion of the concepts of life cycle, paradigm, and methodology.

3.1.2.1 Life cycle, paradigm and methodology

Allusion to the concepts of life cycle, paradigm and methodology are frequent, but

rarely are they accompanied by definitions. Their mutual influences make it difficult to

delineate where one stops and the other starts. In terms of the philosophy described here,

the relationship among these basic concepts may be viewed as illustrated in Figure 3.1, and

discussed below.

Life cycle. We begin with an axiom: the simulation life cycle exists. When a simulation

model is developed and used, it passes through the evolution prescribed by the life cycle –

regardless of whether or not the existence of the life cycle is recognized, or accepted.

A life-cycle model is the codification of the life cycle. In all likelihood no life-cycle

model precisely depicts the actual simulation life cycle. In the remainder of the thesis, the

terms life cycle and life-cycle model are often used interchangeably. In all cases, these are

references to life-cycle models. Italics are used when describing the life cycle.
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Paradigm Methodology

Methodology

Methodology

UNKNOWABLE

KNOWABLE

The Life Cycle

Life-Cycle Model

Figure 3.1: The Relationship Between Life Cycle, Paradigm, and Methodology.

Paradigm. A paradigm dictates that to get from point a to point b the journey should be

viewed as taking a particular form. In this sense, a paradigm is analogous to a philosophy,

e.g. metaphysics or existentialism. Paradigms – like philosophies – may differ widely. Each

seeks to explain the same universe; but each may differ in its underlying axioms and thus

may yield substantially different descriptions of equivalent concepts.

The highest level concept attainable (i.e. capable of being reasoned about) is that of

the paradigm. The shape of the life-cycle models we construct is a direct reflection of the

tenets and principles of the paradigms we adopt; that is,

a life-cycle model is the realization of the life cycle as viewed through one or
more paradigms.

Methodology, method and task. One step (philosophically) below the paradigm is the

methodology.1 A methodology typically prescribes a set of complementary methods and the

rules for using them to support the evolution of software through one or more phases of a

life-cycle model. The methodology itself reflects the influence of one or more paradigms. At

the lowest level in this hierarchy are method and task. Generally, a method is considered to

1Here the discussion regards a single methodology, e.g. the Conical Methodology or the DEVS approach,
as opposed to the more abstract notion of “discrete event simulation modeling methodology.”
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describe the means of accomplishing a specific task by identifying the ordering of constituent

decisions as well as providing guidelines for their resolution.

Nance and Arthur [161] discuss the influence a modeling methodology exerts on the

design of an environment for model development and support. The authors indicate that

the role of a methodology is to identify those principles, e.g. life-cycle verification and

specification-derived documentation, that should govern the modeling process so that a

given set of objectives can be attained. The intent of a modeling methodology is to define a

process by which factors inherent in the task at hand, e.g. the number of objects comprising

the model, the frequency of interactions among them, and the degree of concurrency, can

be overcome. The value of a methodology is derived from its ability to produce a product

(a model) that exhibits validity in conformance with the tolerance level prescribed for the

study.

3.1.2.2 A life-cycle model for simulation

With the above discussion in context, this section begins on a more pragmatic note.

According to Blum [33, p. 18], all systems initiate development with some statement of

need, or requirements, and end (hopefully) with a protracted period of use. The description

of the management process between these two points is commonly the domain of a life-cycle

model. Life-cycle models serve two primary functions. First, they determine the order

of the stages involved in development and evolution. But just as importantly, a life-cycle

model establishes the criteria for transition from one stage to the next [34, p. 14].

A life-cycle model of a simulation study is illustrated in Figure 3.2. The life-cycle model

contains ten phases (designated by ovals), ten processes (designated by dashed vectors) and

thirteen credibility assessment stages (11 of which are illustrated in the figure using solid

vectors). Detailed descriptions of the components of the life-cycle model are provided in

Appendix A.

The origins of the life-cycle model pictured in Figure 3.2 can be traced to a group of

guidelines identified by Nance [155] as the “model life cycle.” This early form of the life cycle

described primarily those phases which comprise model development (the phases which form

the circle in Figure 3.2). Nance and Balci [162] subsequently extend the original concepts,

and Balci [20] defines the form presented here. Note that the entire structure serves to
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Figure 3.2: A Life-Cycle Model of a Simulation Study.
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support one thing: the decision process. Note also the very limited role of the program

within the life-cycle model. While program-related (implementation) decisions, especially

in the presence of new technologies, may necessarily have impact outside of the program

phase of the life-cycle model, the impact of program design should not be so pervasive that

it is allowed to significantly encumber other phases.

3.1.3 Some issues in model representation

According to Nance [157], beginning in the late 1970s a shift in the focus of the discrete

event simulation community from a program-centric view of the simulation process to a

model-centric view occurred. Motivating this shift was an evolving recognition of two factors:

(1) programming language representations contain implementation-related information that

obscures the clear enunciation of model behavior, and (2) the use of a particular language

has direct, often hidden, influences on the structure of the model formulation.

3.1.3.1 The programming language impedance

As identified in [159] a simulation programming language (SPL) must provide:
• Generation of random numbers, so as to represent the uncertainty associated with an

inherently stochastic model.

• Process transformers, to permit uniform random variates obtained through the gen-
eration of random numbers to be transformed to a variety of statistical distributions.

• List processing capability, so that objects can be manipulated or created and deleted
as sets or as members, added to and removed from sets.

• Statistical analysis routines, to provide the descriptive summary of model behavior
so as to permit comparison with system behavior for validation purposes and the
experimental analysis for both understanding and improving system operation.

• Report generation, to furnish an effective presentation of potentially large reams of
data to assist in the decision making that initially stimulates the use of simulation.

• A time flow mechanism, to provide an explicit representation of time.

Despite the best efforts of any SPL designer, the syntax concomitant with each of these

capabilities clutters a programmed model with details that contribute nothing to the de-

scription of the behavior of the underlying system. Since ideally, in order to facilitate model

analysis, a description free of these and other implementation details is preferable, the need

for higher level model representational forms becomes evident.
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3.1.3.2 The conceptual framework problem

While no etiology of software errors exists, many errors seem to arise as the result of a

poor mesh between the models of problems as they form in the mind (or minds) of a modeler

(modeling team), and the representational capabilities provided by extant programming

languages and techniques.

The developers of simulation programming languages sought to close this conceptual

distance through the provision of a conceptual framework (or “world view”) within the

language. The conceptual framework provides a modeler with a means to construct a

mental picture of the model. Theoretically, if the model in the modeler’s mind and the SPL

utilize the same conceptual framework, the distance is closed.

As Overstreet [178, p. 164] observes, the traditional conceptual frameworks can best be

described as providing a perspective on system representation through varying localities.

The behavior of a system can be modeled according to:

1. the times at which things “happen” (the event scheduling world view; locality of time),

2. a state precondition on the occurrence of something happening (the activity scanning
world view; locality of state), or

3. the ordered sequence of actions performed on (or by) a given model object (the process
interaction world view; locality of object).

In his thesis, Derrick [65] classifies thirteen conceptual frameworks and identifies both pos-

itive and negative aspects of their influence on model representation.

The provision of conceptual frameworks within simulation programming languages os-

tensibly affords significant benefits for modeling as compared to general purpose languages.

These conceptual bridges are not without their drawbacks however – the tendency to use

the language best known by the modeler often results in a contrived “fitting” of the nat-

ural model description into the form provided by the simulation programming language,

serving only to recreate the original impedance problem once removed. To illustrate this

point, consider the classical machine interfence model (see Chapter 6) in which a technician

monitors and repairs a set of machines that fail intermittently.

• A SIMULA implementation of this model may contain a description of the lifetime of
a machine class object and a technician class object – a machine operates for some
time, fails, waits for repair, and then repeats the cycle; a technician detects a machine
failure, travels to the machine and repairs it.
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• A GPSS implementation of this model is very different: defining the technician as
a static facility and defining machine failures as transactions which queue for the
technician facility.

• A SIMSCRIPT implementation of this same model might adopt an entirely different
view by describing the model behavior that corresponds to identifiable events in the
model, such as a machine failure or an end of repair.

This example raises the question: which implementation provides the most “natural”

description of the machine interference model? Obviously no definitive answer to this

question exists; different people often view the same thing in different ways. Clearly though,

a representation (such as GPSS) that characterizes machine failures as “moving” objects

does not conform with the physical reality. Consequently, the programming of a correct

model and its verification and validation are subject to difficulties. The “conceptual bridge”

supposedly provided by the SPL becomes a “conceptual chasm.” An important result

from [65] is the identification of the need to select a conceptual framework suitable for a

particular model and a given set of objectives.

3.2 An Environment for Simulation Model Development

One effort to put the modeling methodological perspective of discrete event simulation

into practice is the Simulation Model Development Environment (SMDE). The SMDE is

an ongoing research effort at Virginia Tech that dates to 1983. Over forty publications

have appeared and some ten Master’s and Doctoral theses have been produced within the

SMDE research effort. For an historical overview of the SMDE project and a complete

bibliography, see [21].

The SMDE is the realization of the life-cycle model illustrated in Figure 3.2, as supported

by the Conical Methodology (see Chapter 5). The SMDE seeks to provide an integrated set

of software utilities that offer automated support in the development, analysis, translation,

verification, archival storage/retrieval, and management of discrete event simulation models,

and thereby achieve the automation-based paradigm for simulation modeling through the

evolutionary development of prototypes.

Figure 3.3 depicts the architecture of the SMDE in four layers: (0) Hardware and

Operating Systems, (1) Kernel SMDE, (2) Minimal SMDE, and (3) SMDEs.

23



CHAPTER 3. A PHILOSOPHY OF MODEL DEVELOPMENT

Kernel Interface

Hardware and

Assistance
Manager

Language
Command

Interpreter

SMDEsMinimal SMDE

Functions
Kernel SMDE

Editor
Text

System
Mail

Electronic

Manager
Code

Source

Verifier
Model

Translator
ModelAnalyzer

Model

Generator
Model

Manager
Premodels

Manager
Project

Operating System

Figure 3.3: The SMDE Architecture.

Layer 0 is comprised of the prototype hardware, currently a SUN workstation (efforts

are ongoing to complete a production SMDE, named the Visual Simulation Environment

(VSE), using a NeXT platform). The kernel, Layer 1, integrates all SMDE tools into the

software environment. Layer 2 provides a comprehensive set of tools which are minimal

for the development and execution of a model. Comprehensive implies that the toolset

is supportive of all model development phases; minimal implies that the toolset is basic

and general. Layer 3 includes tools that support specific applications and are needed either

within a particular project or by an individual modeler [15]. Descriptions of the the minimal

SMDE toolset as well as references to efforts on tool development are given in Appendix B.

3.3 A Next-Generation Framework for Model Development

In this section, a framework for model development is described. The framework is de-

signed to facilitate the cost-effective integration of emerging technologies with the constrain-

ing objective of decision support. Model representation provides the key to the suggested

framework. A brief discussion of the general theories of model representation is warranted.
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3.3.1 Theories of model representation

Model representation (or model specification) is the process of describing system behav-

ior and in-so-doing converting the model that exists in the mind(s) of the system designer(s)

– conceptual model(s) – into a model that can be communicated to others – communica-

tive model. The primary role assigned specification in the development of software is to

enunciate what the system is to do as separate from how it is to be done [23].

This representation is most often accomplished via a specification language. A specifi-

cation language offers perceptual guidance through the provision of concepts enabling the

behavior of a system to be described; but, of equal importance is the fact that a specification

language is the medium of communication for expressing this behavior [181, p. 10]. The

nature of this medium is the subject of some debate, which is briefly highlighted here.

3.3.1.1 Wide-spectrum versus narrow-spectrum languages

One way to classify specification languages is by the number of phases of a life-cycle

model the language addresses, or claims to support. A single language that supports the

software process throughout many phases of a life-cycle model is called a wide-spectrum

language. Whereas, a language that supports only one or two phases of a life-cycle model

is known as a narrow-spectrum language [167]. Within the software community both ap-

proaches have been used with some degree of success and no preponderance of evidence

suggests that one approach is superior to the other. The degree to which a language (or

languages) “succeeds” – for any given definition of success, e.g. ease of use, expressibility of

concepts, etc. – hinges primarily upon how it is applied. A good wide-spectrum language

will always produce specifications that are consistent and integrable. But some phases of the

life cycle may not be as strongly supported as others, and the language may fail to contain

a concise syntax and semantics in its attempts to provide a multiplicity of representations.

When using a narrow-spectrum approach, the languages need to work in concert to achieve

their goal. Although each language may have vastly different semantics, ideally these dif-

ferences should reflect only the different aspects of a single underlying methodology. This

aids in the generation of conceptual integrity [39] in the end product – although perhaps

conceptual congruity is a more suitable term; the idea is to produce representations within

a derivation sequence that are congruent to their adjacent representations.
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3.3.1.2 Formal approaches

Historically, most specification languages have been formal in nature. Formalism in

specification allows the application of mathematical rigor to the analysis of specifications

which supports verification and validation in a manner not possible with informal, natural-

language specifications. Efforts such as AXES [95], Special [216], PSL/PSA [226, 242],

TAXIS [36, 175], PDL [42, 109], GYPSY [7], and RDL [100] are formal narrow-spectrum

languages which have been used to specify software at various points in the life-cycle.

Some recent efforts in wide-spectrum languages, PAISLey [247, 248, 249], JSD [43, 111],

and Entity-Life Modeling [202] have also been applied to varying degrees of accomplishment.

Wing [241] outlines the use of formal methods in software specification, and a review

of a variety of both formal and informal specification languages is provided by way of a

comparison matrix in [223]. For a general discussion of formal versus informal methods,

and the philosophy of their application, refer to [82, 147].

3.3.1.3 Graphical approaches

Although mathematical formalism is a very powerful tool, the non-technical community

(representing software clients and sponsors) has historically been reluctant to accept these

types of formal specifications – primarily due to their mathematical nature. Clients who do

not fully understand the specification of a proposed system cannot be expected to detect

specification errors. This often results in the delivery of a flawed product, and subsequent

client dissatisfaction.

Software producers, needing to improve the level of communication between them-

selves and the marketplace, have responded with the development of less mathematical,

graphically-based system specifications. In a paper titled, “Formal Specification Languages:

A Marketplace Failure; A Position Paper,” Bracket claims that many researchers share the

opinion that graphically-oriented specification languages are the best approach to enhanc-

ing communication among a wide variety of specification audiences [38]. Indeed much of

today’s software specification research moves in this direction [40, 83, 136, 199, 243]. Of

note is STATEMATE, defined by Harel [97, 98]. STATEMATE provides operational speci-

fications combined with a graphical user interface. Execution of the model provides the user

with a clear view of the system which may eliminate many of the communication problems
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associated with mathematically formal specifications [97]. Other endeavors in the area of

visual languages include: PECAN [198], HI VISUAL [108], and GARDEN [199] a graphical

programming environment developed at Brown University, and Cadre’s TEAMWORK.

Despite the implications of Bracket’s title, these graph-based, and visual specification

languages are, in fact, formal in nature: they provide a precise syntax and semantics to

facilitate model analysis. However, the claimed advantage of these approaches is that the

formalisms are couched in a manner that enhances specification understanding in non-

technically oriented personnel much more so than purely mathematical formalisms.

3.3.2 Requirements for a next-generation modeling framework

In a 1977 report to the National Bureau of Standards, Nance [153] surveys the existing

modeling methodologies and specification languages and finds that none provide model

documentation to a sufficiently high level. The report identifies the characteristics of a

simulation model specification and documentation language (SMSDL):2

N1. The semantics of a SMSDL must facilitate model specification and model documenta-
tion.

N2. A SMSDL must permit the model description to range from a very high to a very low
level.

N3. The degree of detail – the level of description – should be controllable within the
SMSDL.

N4. A SMSDL must exhibit broad applicability to diverse problem areas.

N5. A SMSDL should be independent of, but not incompatible with, extant simulation
programming languages.

N6. A SMSDL should facilitate the validation and verification of simulation models.

In a panel session held at the 1992 Winter Simulation Conference, entitled “Discrete

Event Simulation Modeling: Directions for the ’90s,” Sargent outlines the requirements for

a modeling paradigm [205]:

S1. General purpose – to allow a wide variety of problem types and domains.

S2. Theoretical foundation – to move the modeling process towards science.

2These criteria are also presented in [154].
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S3. Hierarchical capability – to facilitate the modeling of complex systems.

S4. Computer architecture independence – sequential, parallel and distributed implemen-
tations from same model.

S5. Structured – to guide user in model development.

S6. Model reuse – support a model database for component reuse.

S7. Separation of model and experimental frame – model should be separate from model
input and model output.

S8. Visual modeling capabilities – to permit graphical model construction.

S9. Ease of modeling – world view(s) should ease the modeling task.

S10. Ease of communication – the conceptual model(s) should be easy to communicate to
other parties.

S11. Ease of model validation – should support both conceptual and operational validity.

S12. Animation – model animation provided without burden to the modeler.

S13. Model development environment – to support modeling process.

S14. Efficient translation to executable form – model automatically converted to computer
code, or if not automated, facilitate programmed model verification.

Combining these two sets of criteria produces the list of requirements for a next-

generation modeling framework given in Table 3.1. The table lists ten requirements and

their relationship to the criteria of Nance and Sargent.

3.3.3 An abstraction based on a hierarchy of representations

In this section, a “model of model development,” or model development abstraction, is

described. The SMDE architecture defines three tools which influence the description of

the abstraction: the model generator, the model analyzer, and the model translator. These

tools clearly demonstrate the separation of model and program as advocated by discrete

event simulation modeling methodology. Without question, the model – particularly the

model generator and the representational form it provides – has been the focus of the

majority of past SMDE research efforts. However, the view of model development has

traditionally been that of a single model specification which is generated and then analyzed

and translated to execute on a given sequential architecture. This view is rather narrow,

but is easily extended to describe an abstraction (supportive of a next-generation modeling
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Table 3.1: Requirements for a Next-Generation Modeling Framework.

Requirement Satisfies
Encourages and facilitates the production of model and study
documentation, particularly with regard to definitions, N1,S7,S10
assumptions and objectives.

Permits model description to range from very high to very low level. N2,S10
Permits model fidelity to range from very high to very low level. N3,S3
Conceptual framework is unobtrusive, and/or support S8,S9
is provided for multiple conceptual frameworks.

Structures model development. Facilitates management of model N3,S2,S5,S8
description and fidelity levels and choice of conceptual framework.

Exhibits broad applicability. N4,S1
Model representation is independent of implementing language N5,S4,S14
and architecture.

Encourages automation and defines environment support. S2,S13,S14
Support provided for broad array of model verification and N6,S11,S12
validation techniques.

Facilitates component management and experiment design. S2,S3,S6,S7

framework) which permits the integration of emerging technologies, while sustaining the

primary objective of decision support.

Model development may be viewed as taking the form of a transformational hierarchy

such as in Figure 3.4. The figure describes three “levels” of model representation:

1. Modeler-generated specifications. These representational forms permit a modeler to
describe system definitions, assumptions and the set of objectives for a given study,
as well as the model behavior in a manner suitable to meet the objectives. While a
canonical form is implied by the figure, the nature of this form has not been defined.

2. Transformed Specifications. Adhering to the principle of successive refinement, auto-
mated and semi-automated transformations are defined to various forms that enable
analysis and translation to implementations meeting a specified criteria.

3. Implementations. The lowest level of the transformed specifications are the imple-
mentations. These executable representations satisfy the particular system level con-
straints of a given simulation study.

The hierarchy may be envisaged as being composed of either a set of cooperative and

congruent narrow-spectrum languages, or a single wide-spectrum language. Subsequent

chapters present a realization of this abstraction using the Conical Methodology and the

Condition Specification (reviewed in Chapter 5).
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. ..

...

Implementations

Transformed specifications

Visual Interactive for Machine x

High Fidelity Visualization for Machine x

Low Fidelity Analysis for Shared Memory Multiprocessor z

Real-Time Analysis for Machine w

Animation and Analysis for Machine w

Hardware-in-the-Loop Testing for System s

Modeler-generated specifications

Figure 3.4: A Transformational Hierarchy for Simulation Model Development.

In the next chapter, the other existing (formal) approaches to discrete event simulation

model development are surveyed. The criteria presented in Table 3.1 provide the evaluative

basis.

3.4 Summary

In this chapter, a philosophy of model development is described. The philosophy out-

lines the precepts and tenets of discrete event simulation modeling methodology, and is

grounded in the recognition that the overriding objective of simulation in any context is

the production of a correct decision. Factors that influence decision support are identified

and a management structure based on the concepts of life cycle, paradigm and methodology

is described.

The SMDE research effort, which represents a realization of the philosophy described

here, is discussed and its framework for model development extended to permit the integra-

tion of emerging technologies in a coherent fashion. Criteria for a next-generation modeling
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framework are identified based on the combined observations of Nance and Sargent. These

criteria serve as the evaluative basis for the approach described in this thesis.
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Chapter 4

FORMAL APPROACHES TO DISCRETE EVENT
SIMULATION

It is very easy to be blinded to the essential uselessness of
them by the sense of achievement you get from getting them
to work at all.

Douglas Adams, So Long and Thanks for All the Fish

In this chapter, the existing approaches to discrete event simulation model development

are surveyed and evaluated in terms of the requirements for a next-generation modeling

framework given in Table 3.1.1 The focus of the survey is restricted as follows: (1) only

“formal” approaches are considered since one of the criteria is to encourage automation, and

(2) programming-language-based approaches are not evaluated since the modeling method-

ological view and the philosophy described in Chapter 3 call for programming-language-

independent representations.2

4.1 Preface

When confronted with the task of analyzing a complex system, one method of recourse

is to build a model of that system. In this chapter we address a specific form of model: the

discrete event simulation model. The objective is to survey existing approaches and assess

the level of support provided for: (1) conceptualizing, (2) representing, (3) analyzing, and

(4) implementing these types of models. To preface the survey, discrete event simulation

1The CM and CS are reviewed and evaluated in Chapter 5.
2For a comprehensive historical survey of simulation programming languages, see Nance [159].
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Probabilistic/Deterministic
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Temporal Nature

Model Representation

Figure 4.1: A Classification Scheme for Discrete Event Simulation (DES) Models. All
DES models fall within the class of abstract, dynamic, descriptive, numerical models.

models are placed within a broader taxonomy.

4.1.1 A model classification scheme

The art of modeling is arguably as old as mankind itself. And the uses for models, as

well as the forms that models may take, vary significantly. As a result, while the concept

of model is generally well-understood, a precise description of characteristic properties is

difficult to formulate.

The classification scheme for models adopted here is derived from [18]. Figure 4.1 illus-

trates the scope of discrete event simulation models within this scheme. The classification

scheme provides an orthoganality in four dimensions. The first dimension characterizes the

model representation. An abstract model is one in which symbols constitute the model.

A verbal or written description in English is an abstract model. A mathematical model is

described in the symbology of mathematics and is a form of abstract model. A simulation

model is built in terms of logic and mathematical equations and is considered an abstract

model. A physical model is a replica, often on a reduced scale, of the system it represents.

A physical model “looks like” the system it represents and is also called an iconic model.

The second dimension characterizes the study objective underlying the model. A de-

scriptive model describes the behavior of a system without any value judgement on the

quality of such behavior. A prescriptive (normative) model describes the behavior of a
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system in terms of the quality of such behavior. When solved, these models provide a

description of the solution as optimal, suboptimal, feasible, infeasible, and so on. Linear

programming models are prescriptive, for instance.

A third dimension relates to the presence of temporal properties in the model. A static

model is one which describes relationships that do not change with respect to time. Static

models may be abstract or physical. An architectural model of a house is a static physical

model. An equation relating the area and volume of a polygon is a static mathematical

model. A dynamic model is one which describes time-varying relationships. A wind tunnel

which shows the aerodynamic characteristics of proposed aircraft design is a dynamic phys-

ical model. The equations of motion of the planets around the sun constitute a dynamic

mathematical model.

The fourth dimension identifies a solution technique. An analytical model is one which

provides closed-form solutions using formal reasoning techniques, e.g. mathematical deduc-

tion. A numerical model is one which may be solved by applying computational procedures.

Discrete event simulation models are considered in the class of abstract, dy-
namic, descriptive, numerical models.

As illustrated in Figure 4.1, within this general classification of discrete event simulation

models a subordinate classification scheme exists. Discrete event simulation models may

be defined with various combinations of the following characteristics: (1) a linear model is

one which describes relationships in linear from, and a nonlinear model describes nonlinear

relationships; (2) a stable model is one which tends to return to its initial condition after

being disturbed, while an unstable model is one which may not return to its initial condition

after being disturbed; (3) a steady-state model is one whose behavior in one time period is

of the same nature as any other time period, while a transient model is one whose behavior

changes with respect to time; (4) a probabilistic (stochastic) model is a model in which

at least one state change is a function of one or more random variables, otherwise, the

model is deterministic, and (5) an autonomous model is one in which no input is required

(or permitted) from the environment, other than at model initiation, while a model that

permits input to be received from its environment at times other than model initiation is a

nonautonomous model.
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4.1.2 Formalism and discrete event models

Approaches surveyed in this chapter are considered solely with regard to the construction

and use of models for the explicit purpose of discrete event simulation.3 These models are

referred to as discrete event simulation models, or discrete event models. The systems

underlying these models may be referred to (somewhat misleadingly) as discrete event

systems.

Discrete event models may provide a variety of means by which to understand, and

reason about, the underlying system. These provisions may range from the highly in-

tuitive to the completely mathematical. While intuitive assistance can be valuable, the

ever-increasing investment in discrete event simulation as a problem-solving technique (de-

scribed in Chapter 1) demands methods through which properties of the simulation may be

formally established. According to [212, p. 641]:

A formalism provides a set of conventions for specifying a class of objects in a
precise, unambiguous, and paradigm-free manner. The structure of a formalism
further provides a basis for measuring the complexity of objects in that class.

Each of the surveyed approaches are formal in nature.

4.2 Lackner’s Formalism

Simulation, as a computer-based problem-solving technique, is essentially as old as the

computer itself. And like many other computer-related techniques, its use and application

preceded the development of a cogent theory. The technique of computer simulation was

driven in the earliest years by simulation program language (SPL) developments (see [159]).

But during the early 1960s, Michael Lackner became among the first to recognize, and state

unequivocally, the need for the development of a general theory of systems and models

separate from the development of SPLs. Lackner [125, pp. 25,27] observes:

What has happened in the development of simulation languages is this: the or-
derly scheme of relationships has been expressed in computer code, the programs
that are a part of every model. A modeler using the language understands that
this scheme is supplied; he does not alter the scheme in using the language;

3We examine some popular analytic techniques but only in the context of their use in simulation model
development.
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he describes system elements in accordance with the category system, which is
also invariant. The simulation language is a part of a simulation scheme that is
based on a theory of systems, but the theory has been neither elucidated nor de-
veloped. . . .Only by appeal to this [general] theory [of systems] may a modeler
say “this is a model of object system x” and “this is how the model behaves.”
Only by such appeal may he explain why4 it is a model, and why the model so
behaves. . . .Furthermore, development of system theory should make possible
deductions of interesting measures and properties of simulation models that are
not dependent on empirical observation of the models’ [sic.] behavior.

Lackner presents a theory of discrete event systems in which change, not time, is prim-

itive; the theory, and the “Calculus of Change” require that time is defined in terms of

change. The following description is adapted from [124, 125].

4.2.1 Defining the theory

4.2.1.1 The problem

Lackner observes that the fundamental dilemma faced in simulation modeling is the

necessity of characterizing the dynamic in static terms. Whatever methods are used, limi-

tations are naturally encountered [125, p. 10]. The logical complexity of the model can be

increased by introducing conditional procedures, but two essential features of many systems

are still lacking in the program structure: (1) the asynchronous operation of related com-

ponents, and (2) the effects of varying duration of independent processes. These system

characteristics are among the most difficult to reduce to mathematical expression [125, p.

13].

4.2.1.2 System and state

According to Lackner, in a digital simulation a computer simulates an object system (the

system in the real world, or nature space, that is the subject of study) by performing an

algorithm to produce a sequence of states, internal to the computer, that may be interpreted

as describing the behavior of the object system.

A system state description can be considered to be an n-dimensional vector, where n

is equal to the number of variables contained in the system description. The variables

4Underlined in the original.
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may have arithmetic or logical values, and each member of a time series of system state

descriptions may not only contain different values of system variables but be formed of a

different set of variables; the particular variables appropriate to describing the state of the

system may differ from time to time. Thus, two kinds of changes to a state description

may be distinguished: (1) changes in the values of variables, and (2) changes in existence

of variables.

4.2.1.3 Weltansicht

Lackner [125, p. 26] gives the first characterization of conceptual frameworks. He makes

the observation that the final expression of a digital simulation model is computer code –

algorithms and data – but such a categorization of system elements does not produce a

useful model. A more restrictive set of categories is necessary to the establishment of a

general approach to modeling systems. He points out that GPSS requires that a model be

defined in terms of “transactions” which seize “stores” or “facilities” and form “queues.”

SIMSCRIPT requires a breakdown in terms of “entities, “attributes,” “sets,” and “events.”

Lackner asserts that such a restrictive set of categories is identified with a special view

or apprehension of reality as a whole, a Weltansicht, which a modeler adopts when contem-

plating an object system. “A modeler looks at the system in a certain way; certain kinds

of things are contemplated, and an orderly scheme of relationships among these kinds of

things is assumed.”

4.2.2 The Change Calculus

According to Lackner, the notion of change is implicit in the idea of system simulation:

the object system is understood to exhibit behavior. The behavior may be entirely due to

the actions of an individual agent in the system, or it may be a function of the actions of

several agents, and these agents may act sequentially or simultaneously. In the latter case,

Lackner notes that the method of modeling must take cognizance of parallel processes and

simultaneous changes [125, p. 5].

Lackner [125, p. 28] claims that the formal relations used in traditional mathematical

analysis and formal logic are most appropriate to the description of static, unchanging

situations. Change has no real place in these methods. Rules governing change are not
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expressed, but implied by equations expressing static relationships among those entities

that are affected by change. The theory on which the Change Calculus is based stipulates

that all activity is the realization of change. In Lackner’s view, entities are related to each

other by their communal “preclusion” or “evocation” of change, that is, one entity often

causes or prevents a change in another entity.

The change relation. Change is formalized as a relation, denoted by a colon (:), as a

class of antecedent-consequent pairs of logical situations. Logical situations are described

in the form of conjunctions of individual, state-descriptive sentences. Individual change

relations are written, for example, α : β and read “whenever α, then β instead,” where α

and β are conjunctions (or state descriptive variables).

A complete state description consists of the conjunction of a number of system de-

scriptive sentences. It is referred to as the system in the formalization, and the conjoined

sentences are referred to as the laws of the system.

The operation of change brings about a consequent system which is again described by

a conjunction of sentences referred to as the laws of the consequent system.5

Primitive terms. Five primitive terms are defined: (1) K, a dyadic functor, (2) W, a

dyadic change functor, (3) N, a monadic functor, (4) ∧, the null sequence, and (5) a, b, c, . . . ,

sequential variables.

Rule of definition. A new term can be introduced into the system by formulating a

group of terms, called the definition and consisting of: (1) an expression that contains the

new term and in which all the others are terms of the system; (2) the equality symbol, =;

(3) an expression that contains only primitive terms or terms already defined.

Rules of formation.

1. A variable is a consequent.

2. ∧ is a consequent.

3. A group of terms consisting of K followed by two consequents is a consequent.

5The system evolves as an evolution of consequent systems. Lackner does not formally discuss the
mechanism(s) by which this process may be terminated.
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4. A consequent is an antecedent.

5. A group of terms consisting of N followed by a variable is an antecedent.

6. A group of terms consisting of K followed by two antecedents is an antecedent.

7. A group of terms consisting of W followed by an antecedent followed by a consequent
is a change relation.

8. A group of terms consisting of N followed by a change relation is an antecedent.

9. A change relation is a consequent.

10. A consequent is a sentence.

Definitions. WApqr = KKWKpqrWKNpqrWKpNqr

WCpqr = KKWKNpqrWKpqrWKNpNqr

WEpqr = KWCpqrWCqpr

WDpqr = KKWKpNqrWKNpqrWKNpNqr

Rules of deduction. Five rules of deduction are described.

Rules of substitution. (1) A variable or a change relation may be substituted for

a variable, but the same variable or change relation must be substituted for all equiform

occurrences of variables in the expression; (2) a sentence or antecedent consisting of a

number of K’s followed by the same number plus one of sentences or antecedents, in any

order, may be substituted for a sentence or antecedent consisting of the same number of K’s

followed by the same number plus one of sentences or antecedents each of which is equiform

with a sentence or antecedent in the expression substituted; (3) a sentence or antecedent

may be substituted for a sentence or antecedent consisting of K followed by two occurrences

of a sentence or antecedent equiform with the sentence or antecedent substituted.

Rule of substitution by definition. A definition may be substituted for the expres-

sion it defines in a sentence, and reciprocally, without being substituted for all equiform

occurrences of that expression.

Rule of detachment. If a sentence consisting of K followed by two sentences is a

law of the system, a sentence equiform with either the first or second can be posited as a

law of the system.
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Rule of conjunction. If two sentences are laws of the system, a sentence consisting

of K followed by two sentences equiform with the first two sentences may be posited as a

law of the system.

Rules of detachment of the consequent system. (1) A change relation is effective

if it is a law of the system and if its antecedent, or every antecedent that is conjoined in

its antecedent and is not itself a conjunction, is either equiform with a sentence that is a

law of the system or consists of N followed by an antecedent that is not equiform with

a law of the system; (2) a sentence equiform with the consequent of an effective change

relation must be posited as a law of the consequent system; (3) a sentence that consists of

a variable or a change relation and that is not and cannot, under the rules of substitution,

be made equiform with an antecedent conjoined in the antecedent of an effective change

relation must be posited as a law of the consequent system.

Axiom. (1) ∧

4.2.3 Examples

The example of a deduced sequence provided in [125] is reproduced here in Figure 4.2.

A less cryptic example of the Change Calculus from [124] is given in Figure 4.3. This

example describes a simple producer-consumer simulation using the following notation: (1)

Ti/j means “thing i is in state j;” (2) Ni, j means “duration time normally distributed

with mean i time units and standard deviation j time units;” (3) Pi means “duration time

is Poisson distributed with mean i time units;” (4) Ai, j means “the inclusive disjunction,

either i or j.” The syntax is:

(antecedent logical situation):(consequent logical situation) (required duration of antecedent)

For this example, Lackner stipulates: (1) given the occurrence, and specified endurance,

of an antecedent logical situation (ALS), the ALS yields to the consequent logical situation

(CLS); (2) destruction of the ALS before the required endurance precludes the occurrence

of the CLS; (3) if a duration time is not stated, duration time is assumed to be 0. All

duration time distributions are truncated: 0 < t ≤ ∞. (4) Things and states mentioned on
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ϕ0 = (x : x)(yx : y)(xy(x : x)(yx : y) : xy(x : ∧)(yx : x))
ϕ1 = x(x : x)(yx : y)(xy(x : x)(yx : y) : xy(x : ∧)(yx : x))
ϕ2 = y(x : x)(yx : y)(xy(x : x)(yx : y) : xy(x : ∧)(yx : x))
ϕ3 = xy(x : x)(yx : y)(xy(x : x)(yx : y) : xy(x : ∧)(yx : x))
ϕ4 = xy(x : ∧)(yx : x)(xy(x : x)(yx : y) : xy(x : ∧)(yx : x))
ϕ5 = y(x : ∧)(yx : x)(xy(x : x)(yx : y) : xy(x : ∧)(yx : x))
ϕ6 = x(x : ∧)(yx : x)(xy(x : x)(yx : y) : xy(x : ∧)(yx : x))
ϕ7 = (x : ∧)(yx : x)(xy(x : x)(yx : y) : xy(x : ∧)(yx : x))

Figure 4.2: A Deduced Sequence in the Change Calculus. A sequence of state descriptions
ϕ1ϕ2 . . . is produced from an original complete state description ϕ0. Notation: (p : q) =
Wpq; pq = Kpq; p = Np; ϕi = complete state description i.

the ALS and not in the CLS are destroyed; (5) Things and states mentioned in the CLS

and not in the ALS are created.

4.2.4 Evaluation

An evaluation of the Change Calculus with respect to the identified requirements for a

next-generation modeling framework appears in Table 4.1. The evaluation procedure defines

four levels of support for a given requirement: (1) not recognized – no documentation

can be found which indicates that the evaluated approach considers the requirement a

desirable characteristic; (2) recognized, but not demonstrated – documentation suggests

that the requirement is recognized as important, however no mechanism is described to

support it; (3) demonstrated – at least one source can be found that indicates support for

the requirement; (4) conclusively demonstrated – substantial evidence indicates that the

requirement is supported.

Lackner’s thesis – the need to define a theory of modeling separate from the purview

of SPLs – initiates a line of modeling methodological research that has persisted for over

thirty years. This fact, alone, makes his work a significant contribution to the history of
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Thing Symbol State
Apple T1 On tree (1); On ground (2); Rotten (3)
Boy T2 Hungry (1); Sated (2); Leaves the scene (3)
Tree T3 Producing apples (1); Not producing apples (2)

Statement Comments
T1/2T2/1 : T2/2 Given an apple on the ground and a hungry boy, the apple

disappears and the boy is sated.
T2/2 : T2/1;N6, 1.5 A sated boy becomes hungry in about 6 time units.
T2/1 : T2/3;N40, 15 A hungry boy leaves the scene in about 40 time units.
T2/A1, 2 : T2/3;P1000 A boy leaves the scene in about 1000 time units, whether he

has been hungry or sated.
T1/1 : T1/2;P20 An apple on the tree falls to the ground about 20 time units

from first appearance.
T1/2 : T1/3;P3 An apple rots if it is on the ground about 3 time units.
T3/1 : T1/1T3/1;P5 A tree producing apples does so at a rate of about 1 every

5 time units.
T3/1 : T3/2;N18, 6 After a tree has been producing apples for about 18 time

units, it stops producing apples.
T3/2 : T3/1;N18, 4 When a tree hasn’t been producing apples for about 18 time

units, it starts producing apples.

Figure 4.3: A Producer-Consumer Model in the Change Calculus.
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Table 4.1: Evaluation of the Change Calculus as a Next-Generation Modeling Framework.
Level of Support is given as: 1 - Not Recognized; 2 - Recognized, but Not Demonstrated; 3
- Demonstrated; 4 - Conclusively Demonstrated.

Requirement Level of Support
Encourages and facilitates the production of model and study
documentation, particularly with regard to definitions, 2
assumptions and objectives.

Permits model description to range from very high to very low level. 2
Permits model fidelity to range from very high to very low level. 1
Conceptual framework is unobtrusive, and/or support 2
is provided for multiple conceptual frameworks.

Structures model development. Facilitates management of model 2
description and fidelity levels and choice of conceptual framework.

Exhibits broad applicability. 2
Model representation is independent of implementing language 3
and architecture.

Encourages automation and defines environment support. 2
Support provided for a broad array of model verification and 2
validation techniques.

Facilitates component management and experiment design. 1

discrete event simulation, and warrants its treatment here. His calculus, however, is incom-

plete, cryptic, and difficult to use. The number of antecedent-consequent pairs will likely

become quite large for complex models, and no provisions for managing these statements

are made. Essentially, the method is reducible to a finite state automaton, a form which

may be generally more appealing, and has been adopted – in one form or another – by

several modeling approaches. Possibly as a result of this, the Change Calculus has seen no

development since the initial publishing during the early and middle 1960s.

4.3 Systems Theoretic Approaches

Several approaches and methodologies (including Lackner’s calculus) for discrete event

modeling trace their origins to general systems theory. General systems theory postulates

that real systems obey the same laws and show similar patterns of behavior even if they are

physically dissimilar [201].

The most developed appeal to general systems theory in the context of discrete event

43



CHAPTER 4. FORMAL APPROACHES TO DISCRETE EVENT SIMULATION

simulation modeling is by Zeigler [250] in his creation of the discrete event system specifi-

cation (DEVS) formalism (discussed below), and his work continues to be by far the most

prominent in this arena [250, 251, 252]. Zeigler uses the theory to establish a hierarchy of

system specifications. These are identified as: (1) system specification input-output relation

observation (IORO), (2) system specification input-output function observation (IOFO),

(3) system specification, (4) structured system specification, and (5) system specification

network. Zeigler demonstrates that specifications in his formalism may be automatically

transformed to reflect each level of the hierarchy through a collection of equivalence pre-

serving morphisms. Zeigler purports, however, that the hierarchy is independent of any

particular modeling formalism; any formalism may be employed to specify a system at any

level. Among the system formalisms Zeigler describes are differential equation system spec-

ifications (DESS), discrete time system specifications (DTSS), and discrete event system

specifications (DEVS).

4.3.1 The DEVS formalism

Zeigler [250] defines a methodology for discrete event modeling known as the discrete

event system specification (DEVS) formalism (see also [253]).

4.3.1.1 Background

DEVS – with its primary influences in general systems theory, and to a lesser extent,

mathematical systems theory, and automata theory – identifies three major conceptual ele-

ments of a discrete event simulation: (1) the system, (2) the model, and (3) the computer.6

Two relationships are also described: (1) modeling, which deals primarily with the rela-

tionship between systems and models, and (2) simulation, which refers primarily to the

relationships between models and computers.

Zeigler [250, p. 4] defines a system as, “some part of the real world, which is of interest.

The system may be natural or artificial, in existence presently or planned for the future.”

The system is a source, or potential source, of behavioral data consisting of XT plots, where

6Zeigler expands the model element to include three parts: (1) the experimental frame, which provides
the basis for model validation, (2) the base model, a valid model in all allowable experimental frames (not
actually producible), and (3) the lumped model, a simpler model generated by “lumping” together and further
abstracting the base model.

44



CHAPTER 4. FORMAL APPROACHES TO DISCRETE EVENT SIMULATION

X is some variable of interest, and T is time. A model is viewed as a set of instructions

for generating behavioral data, and a computer as a device (man or machine) capable of

producing the data from the instructions given by the model. General systems theory

provides five categories for models (in no particular order):

• Models may be classified according to their time base. In a continuous time model,
time is specified to flow continuously – the model clock advances smoothly through
the real numbers toward ever-increasing values. In a discrete time model, time flows
in jumps. The model clock advances periodically, jumping from one integer to the
next (the integers represent multiples of some specified time unit).

• A second category relates to the range sets for model descriptive variables. In a
discrete state model, variables assume a discrete set of values. A discrete event model
is a continuous time/discrete state model.7 In a continuous state model, variable
ranges can be represented by the real numbers (or intervals thereof). A differential
equation model is a continuous time/continuous state model.

• The third category is based on the cause-effect relationships in the model. A stochastic
(probabilistic) model contains at least one random variable. In a deterministic model,
no random variables appear.

• Another category relates the model to its environment. If the environment has no
effect on the model, the model is autonomous. A nonautonomous model has input
variables whose values are not controlled by the model, but to which it must respond.

• A fifth category relates to whether the rules of interaction for a model depend on
time. A model is time invariant if the rules of interaction are independent of time.
Otherwise, the model is time varying.

The two relations are elaborated as follows:

• The modeling relation deals with the validity of the model. Models may be classified
as:

1. Replicatively valid – if the model matches data already acquired from the system.
2. Predictively valid – if the model matches data prior to its being generated by

the real system.
3. Structurally valid – if the model not only reproduces the observed system be-

havior, but truly reflects the way in which the real system operates to produce
this behavior.

• The simulation relation concerns the faithfulness with which the computer carries out
the instructions intended by the model. The level of this faithfulness is a measure of
the correctness of the program.

7Even though time flows continuously, state changes can occur only in discontinuous jumps. A jump can
be thought of as triggered by an event. Since time is continuous, these events can occur arbitrarily separated
from each other. However, no more than a finite number of events can occur in a finite interval [250, p. 22].
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Zeigler observes that one of the most important aspects of modeling, and one of the least

appreciated, is communication [250, p. 7]. And while an informal model description may

communicate the essential nature of a model, it is open to certain intrinsic problems, e.g. in-

completeness, inconsistency, and ambiguity. DEVS is an appeal to formalism in an attempt

to resolve these problems.

4.3.1.2 Model definitions

The model definitions below are predicated, in part, on the following presumptions

regarding discrete event systems [250, p. 125]:

1. A discrete event system may be simulated using a simulator that is driven by a list of
events containing the next clock times at which components are scheduled to undergo
an (internally determined) state change. This time is the hatching time of the event.

2. The hatching times of some events are predictable on the basis of the results of the
occurrence (i.e. hatching) of other events. When a hatching time is predicted, it is
placed on the events list.

3. If the next hatching time of a component cannot be predicted in advance, it will not
undergo a state change until and unless such a change is caused by a state transition
of a component that has been prescheduled.

Atomic Model. An atomic model, M, is given by:

M = 〈X, S, Y, δint, δext, λ, ta〉

where

X Input events set.

S Sequential states set.

Y Output events set.

δint : S → S Internal transition function.

δext : Q×X → S External transition function.

Q = {(s, e) | s ∈ S, 0 ≤ e < ta(s)} (the total state of M)

λ : S → Y Output function.

ta : S →Rnonneg Time advance function.

Essentially, an atomic DEVS model is described by a set of states (S), inputs (X), outputs

(Y ), and four functions that govern the behavior of the model. An atomic model is a modular
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unit, its I/O interfaces form ports through which all environment interaction occurs. The

interior of the model is composed of state variables, and the dynamic behavior of the model

is described by two classes of events:
• Input events. These lead to external event transitions, i.e. on the occurrence of an

input event, the model appeals to its external transition function for the next state.

• Time scheduled internal events. For each state the time advance function defines the
time interval to the next internal event. When this time has elapsed, an internal
event occurs, the system produces an output event and transitions to the next state
as determined by the internal transition function.

Coupled Model. In the DEVS approach, an atomic model is constructed, and by con-

necting together atomic models, coupled models may be created for complex systems. A

coupled model, DN, is given by:

DN = 〈D, {Mi}, {Ii}, {Zi,j}, SELECT 〉

where

D Component names set.

For each i in D (1) Mi = atomic DEVS for component i in D;

(2) Ii = set of influencees of i.

For each j in Ii Zi,j : Yi → Xj; i-to-j output translation function.

SELECT E ⊆ D → D � ∀E �= ∅, SELECT (E) ∈ E;

tie-breaking selector.

The specification of complex models by connecting the I/O ports of atomic models is referred

to as modular coupling. Coupled models also have their own I/O ports and may be used in

even larger coupled models, this is referred to as hierarchical modeling [191].8 From their

I/O interface, coupled models are not distinguishable from atomic components.

Praehofer and Pree [191, p. 597] observe that conventional discrete event modeling

approaches and simulation languages emphasize the concept of event, or activity, or process,

while the DEVS approach emphasizes state. Dynamic behavior is organized around the

phase variable – which denotes global system state. Depending on the current phase of the

system, it will react differently to external inputs and the occurrence of internal events. In

DEVS modeling, the phase actually defines a partition of the state space of the model.

8See Section 4.10.1 for a more detailed characterization of hierarchical modeling.
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4.3.1.3 DEVS-based approaches

The basic tenet of general systems theory – that all systems can be described in common

terms – leads naturally to the application of the DEVS approach to areas outside discrete

event simulation. A substantial proportion of ongoing DEVS-related research addresses

modeling issues in areas such as artificial intelligence, continuous and combined simulation;

very little of what could be described as pure discrete event simulation research is evident.

Zeigler et al. [254] describe DEVS-Scheme. Built on PC-Scheme, a Lisp dialect and

object-oriented programming subsystem for microcomputers, DEVS-Scheme exists in four

layers:

1. The Lisp-based object-oriented foundation that provides processing capabilities and
environment support.

2. A systems model specification layer that provides systems theoretic basis and model
specification language.

3. A systems entity structure/model base layer that provides axiomatic specification and
model synthesis (see Section 4.3.2).

4. A systems design layer called the frames and rules associated system (FRASES), that
embeds the system entity structure in a frame-based knowledge representation scheme.

According to Kim [118, p. 401], the DEVS-Scheme approach supports building models

in a hierarchical, modular manner: “a systems oriented approach not possible in conven-

tional languages.” Sevinc [213] describes DEVS-CLOS, a close relative of DEVS-Scheme,

but based on the Common Lisp Object System. Another object-oriented approach is DE-

VSIM ++, an object-oriented simulation environment built on C ++ [119].

Praehofer and Pree [191] extend the DEVS formalism to facilitate combined, discrete

event and continuous multiformalism modeling (also referred to as multimodeling) in an

approach called DEVandDESS.

Thomas [227] describes the Hierarchical Object Nets (HON) approach. HON is pur-

ported as an open visual object-oriented modeling and simulation system. Based on DEVS

and implemented in C ++, HON is designed to support only discrete event simulation.

Thomas observes [227, p. 651]:

The [DEVS] formalism provides a basis for extending the view on models, allows
handling them as knowledge used to answer a multiplicity of questions rather
than as “just simulation models.” However, when applied only to simulation
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problems the flexibility becomes a problem. This affects the ease-of-use of a
DEVS-based simulation system and its simulation efficiency. We propose HON
as a modification of DEVS in order to extend the formalism’s practicability to
make this powerful means available to practice.

This recognition is also made by Zeigler et al. [254, p. 85] as a basis for DEVS-Scheme: “As

a set theoretic concept, the DEVS formalism by itself is not a practical means of specifying

models.”

4.3.2 System entity structure

According to Cellier et al. [45, p. 60], the system entity structure (SES) is a mechanism

to describe hierarchically structured sets of objects and their interrelations. The SES is a

labeled tree with attached variables types, i.e. a graphical object that describes the decom-

positions of systems into parts. A knowledge representation scheme, SES formalizes the

modeling of systems in terms of decomposition, taxonomic and coupling relationships. SES

provides a formal description of how physical objects are decomposed into parts.

Rozenblit and Zeigler [201] describe a methodology based on SES called the knowledge-

based simulation design (KBSD) methodology. KBSD focuses on the use of modeling and

simulation techniques to build and evaluate models of systems being designed. KBSD

treats the design process as a series of activities that comprise specification of design levels

in a hierarchical manner (decomposition), classification of system components into different

variants (specialization), selection of components from specializations and decompositions,

development of design models, experimentation and evaluation by simulation, and choice

of design solutions. SES is used to capture the decomposition, taxonomy, and coupling

relationships. By a process called pruning, the SES can be converted into a DEVS.

4.3.3 Evaluation

Evaluation of the systems theoretic approaches with regard to the identified requirements

for a next-generation modeling framework appears in Table 4.2. The evaluation indicates

that the theoretical basis provided by general systems theory is both sound and powerful.

Zeigler’s theory has been demonstrated applicable to a wide variety of problem domains, as

well as for solution techniques other than strictly discrete event simulation. The formalisms

(DEVS, SES) provide a well-defined manner through which to structure model development.
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Table 4.2: Evaluation of Systems Theoretic Approaches as a Next-Generation Modeling
Framework. Level of Support is given as: 1 - Not Recognized; 2 - Recognized, but Not
Demonstrated; 3 - Demonstrated; 4 - Conclusively Demonstrated.

Requirement Level of Support
Encourages and facilitates the production of model and study
documentation, particularly with regard to definitions, 2
assumptions and objectives.

Permits model description to range from very high to very low level. 2
Permits model fidelity to range from very high to very low level. 2
Conceptual framework is unobtrusive, and/or support 1
is provided for multiple conceptual frameworks.

Structures model development. Facilitates management of model 3
description and fidelity levels and choice of conceptual framework.

Exhibits broad applicability. 4
Model representation is independent of implementing language 3
and architecture.

Encourages automation and defines environment support. 3
Support provided for a broad array of model verification and 3
validation techniques.

Facilitates component management and experiment design. 4

This framework should enhance the model verification and validation problem as well as

contributing to the automatability of approach. Furthermore, Zeigler’s identification of an

experimental frame stresses the recognition of a context for any modeling effort.

While the methodology is sound, these approaches suffer from a lack of representational

expressiveness. The existing literature regarding the DEVS-based approaches and the SES

fails to demonstrate either an unobtrusive conceptual framework or the ability to describe

system behavior at anything other than a low level. Still, such capabilities seemingly could

be incorporated within an approach based on general systems theory.

4.4 Activity Cycle Diagrams

Tocher [229] introduces a notation for describing the logical “flow” of a simulation.

These flow diagrams represent one of the earliest attempts to provide a graphical descrip-

tion of a simulation model, however they are essentially flowcharts and fail to exploit the

narrowed focus provided by the context of discrete event simulation. Possibly, it was this
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recognition that led to the development of a notation called “wheel charts” [230]. The wheel

chart notation evolved further into a form known as activity cycle diagrams (or entity cycle

diagrams) first described in [101]. These diagrams have become an integral part of much of

the simulation work in the activity scan and three-phase arenas that has persisted, largely

in the UK, since the late 1960s.

In the typical activity cycle diagram (ACD) based approach, a simulation model is

viewed as a collection of interacting entities. An entity is any component of the model which

can be imagined to retain its identity through time. Entities are either idle – in notional or

real queues, or active – engaged with other entities in time consuming activities. An active

state usually involves the cooperation of different entities. A passive state, or queueing state,

involves no cooperation between different entities and is generally a state in which the entity

waits for something to happen. The duration of an activity can always be determined in

advance, whereas the duration of the queueing state cannot be so determined [188]. The

symbology for ACDs is minimal, with one symbol each for a queue and an activity as shown

below.

queue activity

To specify a model using ACDs, a life cycle, or activity cycle, composed of queues and

activities must be given for each class of entity in the model. A common restriction is that

queues and activities must alternate in the representation. If necessary, dummy queues may

be incorporated into the diagram. Typically each activity cycle must be closed.

4.4.1 Example

The quintessential ACD example is the English Pub. The model contains three entities:

a man, a barmaid, and a glass.9 The behavior of each entity is fairly simple. The man either

drinks or waits to drink. The barmaid either pours a drink or is idle. The glass is either

used to drink from, empty, poured into by the barmaid, or full waiting to be consumed.

The ACD for the English Pub model is given in Figure 4.4.

9The English, to their credit, have no use for political correctness.
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empty

full

drink pourwait idle
Glass

BarmaidMan

Figure 4.4: Activity Cycle Diagram for English Pub Model.

4.4.2 The simulation program generator approach

The main usage of ACDs is as a front-end for simulation program generators. A program

generator is a program that produces another program in a high-level language from a simple

input description [54]. The first program generator was the Programming by Questionnaire

(PBQ) system developed at RAND [176, 177] which generated Job Shop simulations based

on information provided by a modeler via machine-readable responses to a questionnaire.

A simulation program generator is an interactive software tool that translates the logic

of a model described in a relatively general symbolism, usually ACDs, into the code of a

simulation language and so enables a computer to mimic model behavior [143]. According

to Mathewson [142], the steps in the use of a simulation program generator are to:

1. Prepare a symbolic description of the model.

2. Use the program generator to obtain a translation of the symbolic description into a
simulation program.

3. Edit the simulation program to insert further detail whose representation is outside
the scope of the symbolic logic.

Most of the work in simulation program generators has been conducted in Europe. Many

of these generators, for example CAPS/ECSL [54], DRAFT [141], and GASSNOL [236], a

simulation program generator based on the Network Oriented CAD Input Language (NO-

CADIL), are application specific and adopt the activity scan conceptual framework.
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Table 4.3: Evaluation of Activity Cycle Diagrams as a Next-Generation Modeling Frame-
work. Level of Support is given as: 1 - Not Recognized; 2 - Recognized, but Not Demon-
strated; 3 - Demonstrated; 4 - Conclusively Demonstrated.

Requirement Level of Support
Encourages and facilitates the production of model and study
documentation, particularly with regard to definitions, 3
assumptions and objectives.

Permits model description to range from very high to very low level. 3
Permits model fidelity to range from very high to very low level. 2
Conceptual framework is unobtrusive, and/or support 1
is provided for multiple conceptual frameworks.

Structures model development. Facilitates management of model 2
description and fidelity levels and choice of conceptual framework.

Exhibits broad applicability. 3
Model representation is independent of implementing language 3
and architecture.

Encourages automation and defines environment support. 3
Support provided for a broad array of model verification and 2
validation techniques.

Facilitates component management and experiment design. 2

Program generators provide analysis at the program level; ACDs are expected only to

provide gross aggregate depictions of model behavior. Direct analysis of ACDs requires the

addition of timing, and variate distribution information to the graphs, and little attention

has been paid to this process. Paul [188] notes that by their nature, ACDs provide a con-

venient means by which to recognize and prioritize simultaneous events at the specification

level. However, no mechanism is described to accomplish this.

4.4.3 Evaluation

An evaluation of activity cycle diagrams, and the program generator approach, with

regard to the identified requirements for a next-generation modeling framework appears in

Table 4.3. The strongest advantage of these diagrams is that they are simple to work with.

However, to fully support the simulation process, these diagrams must either be augmented,

or the code generated from them must be edited. Methodological support for either of these

approaches has not been demonstrated in the literature.
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4.5 Event-Oriented Graphical Techniques

4.5.1 Event graphs

Observing that graphical modeling techniques had been developed for discrete event

simulations adopting either an activity scan (activity cycle diagrams) or process interaction

(GPSS block diagrams) view, but that no such tool was available for event scheduling

models, Schruben [207] introduces a formalism dubbed the event graph.10 Using Schruben’s

terminology, the crucial elements of a discrete event simulation are state variables that

describe the state of the system, events that alter the values of state variables, and the

logical and temporal relationships among events. An event graph is a directed graph that

depicts the interrelation of the events in an event scheduling discrete event simulation. To

construct an event graph, events are defined and numbered, and represented as vertices in

the digraph. Event vertices are connected by directed edges that indicate how one event

influences the occurrence of another event.11 Two classes of edges are defined: a solid edge

represents the scheduling of an event; a dashed edge represents an event cancellation. Thus,

j k

t (i)

indicates that t time units after the occurrence of event j, event k will be scheduled to occur

provided that condition (i) holds at the time event j occurs. And,

j k

t (i)

indicates that t time units after the occurrence of event j, any currently scheduled occurrence

of event k will be canceled provided condition (i) holds at the time event j occurs.12

Some additional properties of event graphs are: (1) two vertices may be joined by

10GPSS block diagrams (see [90]) are tailored to support the transaction flow conceptual framework of
GPSS, and are not directly applicable for model development under the common process interaction world
view (e.g. as supported by SIMULA). For this reason, GPSS block diagrams are considered implementation-
language-dependent, and are therefore not included in this survey.

11In the usual parlence of graph theory (see [35]) vertices in an undirected graph are connected by edges,
and vertices in a directed graph are connected by arcs. The terminology applied in this chapter adheres to
that of the individual techniques, and not necessarily to the standards of graph theory.

12Schruben [207, p. 958] notes that event canceling is generally convenient in modeling but not necessary.
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more than one edge, and loops are also permitted; (2) edges without condition labels are

referred to as unconditional edges; (3) both edge delay times and condition labels may

invoke random variates; (4) event vertices and condition labels may be parameterized to

simplify the graph; (5) an event graph is not necessarily connected. Note that system time

and the list of scheduled event occurrences are implicit in an event graph.

Example. The following Parts Model example is from [207]. In this example, parts arrive

for processing by one of three identical machines. A machine is selected at random from

the set, A, of available machines. Processing may be interrupted, and parts that have their

processing interrupted will be finished once their machine resumes operation. We define:

ta = random time between part arrivals
tc = cycle time required for a machine to process a part
td = random duration processing interruption
ti = random interval between machine interruptions
T (j) = processing time remaining for part currently on machine j

T (j) = 0 if machine j is idle
M(j) = 1 if machine j is available; 0 otherwise
p = number of parts waiting for processing
(i) = parts are waiting, (p > 0)
(ii) = at least one machine is available, (A �= ∅)
τi = the time until the next currently scheduled occurrence of event i
event 1 = { part arrival }

p = p + 1, randomly select j ∈ A, generate ta
event 2(j) = { begin processing on machine j }

M(j) = 0, p = p− 1, T (j) = tc −min(tc, τ4(j))
event 3(j) = { end processing on machine j }

M(j) = 1
event 4(j) = { interrupt machine j }

M(j) = 0, generate td
event 5(j) = { machine j return to operation }

generate ti

The event graph for this model is given in Figure 4.5.

Methodology and analysis. Schruben [207, p. 960] provides little guidance in terms

of a methodology for graph construction, noting only that state variable definition, event

definition, and edge conditioning usually proceed simultaneously in developing an event

graph. Subsequent development yielded the Simulation Graphical Modeling and Analysis

(SIGMA) environment. Written in C, and using the HOOPS object-oriented picture system,
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Figure 4.5: Event Graph for Parts Model.

SIGMA models – in the form of event graphs – are constructed and either directly executed

or automatically transformed into standard C or Pascal code [208, 209, 210]. SIGMA is

proposed as a learning environment rather than a commercial one. The environment is

somewhat limited. For example, the first vertex created during the modeling process must

always represent initialization, and editing of the source code and library routines is required

to utilize multiple random number streams. A more significant limitation is the absence

of methodological guidance in terms of defining and ordering the classes of decisions which

need to be made during model development.

Diagnostic analysis of event graph models may aid in the following [207]:

• Identifying needed state variables.

• Determining a minimal set of events that must be scheduled at model initiation.

• Anticipating logic errors due to simultaneously scheduled events.

• Eliminating unnecessary event routines.

Schruben suggests heuristics for each of these, although no attempt is made to formalize

the approach to model diagnosis.

Since 1983, several variations of event graphs have been proposed [104, 126, 189, 203],

however the work of Schruben remains the most prominent. Schruben [209] illustrates how

event graphs can be marked in a manner similar to Petri nets. In a marked event graph, the
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number of tokens in an event vertex represents the number of outstanding instances of that

event. Som and Sargent [219] formalize the analytic heuristics suggested by Schruben. Event

execution order prioritization permits the generation of an expanded event graph. From this

graph, super events are identified and used as a basis for computation, thereby reducing

event list processing and fostering more efficient implementation of event scheduling models.

Some questions exist regarding their approach, however. Yücesan [244, p. 34] gives an

example graph for which these “event reduction” rules are invalid.

4.5.2 Simulation graphs and simulation graph models

Yücesan [244] demonstrates that event graphs of some simple queueing systems are

planar, and shows that the dual of an event graph represents a model specification reflecting

an activity scan world view (see [211]). These results illustrate the possible generality of

event graphs; as a result, Yücesan [244] defines a simulation graph, which is a variant of

event graph but intended as a world-view-independent representational mechanism. The

discussion of simulation graphs given here is adapted from [246].

A simulation graph is defined as an ordered quadruple:

G = (V (G), Es(G), Ec(G),ΨG)

where

V (G) is the set of event vertices

Es(G) is the set of scheduling edges

Ec(G) is the set of canceling edges

ΨG is the incidence function

The data defined in the graph are given by the following indexed sets:

• F = {fv : STATES → STATES | v ∈ V (G)}. The set of state transition functions
associated with vertex v.

• C = {Ce : STATES → {0, 1} | e ∈ Es(G) ∪Ec(G)} The set of edge conditions.

• T = {te : STATES→R+ | e ∈ Es(G)} The set of edge delay times.

• Γ = {γe : STATES→ R+ | e ∈ Es(G)} The set of event execution priorities.
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Where STATES is defined as in Zeigler’s [250] development. A simulation graph model

(SGM) is:

S = (F , C, T ,Γ, G)

The first four sets in the above five-tuple define the entities in a model. The role played

by a simulation graph, G, in the definition of a simulation graph model, S, is analogous

to the role of the incidence function, Ψ, in the definition of a directed graph: it organizes

these sets of entities into a meaningful simulation model specification, i.e. G specifies the

relationship between the elements in the sets F , C, T and Γ [212].

4.5.2.1 Equivalence analysis

Yücesan and Schruben [246] utilize simulation graphs as a basis for evaluating the equiv-

alence of simulation model specifications. The objective is to identify when two simulation

models can be used interchangeably without actually having to run both simulations under

all possible experimental conditions and compare their output behavior. The authors’ dis-

cussion is predicated on the following definitions. In an SGM, an edge condition is simple

if it consists of two arithmetic expressions connected by a relational operator, i.e. a simple

edge condition is a relation. An edge condition is compound if it consists of two or more

relations joined by Boolean operators. A vertex is simple if there is at most one state vari-

able change associated with it. Otherwise the vertex is compound. A vertex with no state

variable changes is the identity vertex. An SGM is an elementary simulation graph model

(ESGM) if it contains only simple vertices and simple edge conditions.

Given any SGM, an associated ESGM can always be constructed by expansion of the

SGM. Expansion involves replacing all instances of single event vertices with m (m ≥ 1)

state variable changes, by m vertices in series, each with a single state variable change, and

replacing all instances of edges with compound conditions by a group of identity vertices,

each connected by edges with simple conditions. During this process, the logical structure

of the original model is always preserved [246, p. 87]. Application of the expansion rules

does not generate a unique ESGM. However, all ESGMs constructed in this manner are

mutually isomorphic and therefore form an equivalence class. The isomorphism problem is

intractable for general graphs, but efficient algorithms for planarity testing and determining

isomorphism on planar graphs do exist [105, 106].
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According to [246] SGMs S1 and S2 are structurally equivalent if they have ESGMs,

SE1 , SE2 , respectively, which are isomorphic. A further result is that structural equivalence

implies behavioral equivalence. This result is important since it means that we can a

priori analyze two model specifications to determine their equivalence, without having to

generate and run implementations of them. However, these analytic techniques have not

been implemented in an environment, so their application to large-scale models remains the

subject of future study.

Note that Overstreet [178] also shows that structural equivalence of a Condition Speci-

fication implies external equivalence. Furthermore, since digraphs utilized within the Con-

dition Specification may not be planar, he argues that no polynomial-time algorithm exists

to determine the structural equivalence of two CSs.

4.5.2.2 Complexity analysis

In [212] simulation graphs are used as a basis for analyzing model complexity. Their

focus is on complexity measures that relate directly to the structural properties of simu-

lation model specifications, with primary attention paid to predicting implementation and

maintenance costs. They define three measures of space complexity:

C1 = | V (G) |

C1 relates complexity to the size of the specification.

C2 =
| E(G) |
| V (G) |

where E(G) = Es(G)∪Ec(G). C2 relates complexity to the number of possible component

interactions.

C3 =
∑

v∈V (G)

C(v) +
∑

v,w∈V (G)

I(v, w)

where C(v) denotes some measure of the complexity of vertex v, and I(v, w) denotes some

measure of interaction between vertices v and w. C3 represents the sum of the complex-

ities of each “module” and the intermodular interaction. This metric is somewhat vague,

however, since no clear choices for C(v) and I(v, w) exist.

Schruben and Yücesan [212] present a fourth complexity measure associated with the

number of control paths through a graph. Based on McCabe’s [146] work, the cyclomatic
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number of a simulation graph, G, with n vertices, e edges, and p connected components is:

η(G) = e− n + p

The results of their analysis using the four complexity measures indicate that the com-

plexity of individual events, measured as the number of modified state variables within

that event, plays a principal role in determining the execution time of a single run. The

branching structure, as measured by the cyclomatic complexity of the graph, has secondary

influence [212].13

4.5.2.3 Theoretical limits of structural analysis

Yücesan and Jacobsen [245] discuss some theoretical limitations of structural analysis.

Based on their experience with simulation graphs, the authors demonstrate that the follow-

ing properties of discrete event simulation models are intractable (albeit decidable) decision

problems:

• Accessibility of states - determining whether or not any given model state will occur
during an execution of the model.

• Ordering of events - determining the existence of, or ruling out the possibility for,
simultaneous events.

• Ambiguity of model implementations - determining whether the model implementation
“satisfies” the model specification.

• Execution stalling - determining whether an execution can enter a state in which no
determined events exist and the termination condition is not met.

They further argue that these properties hold for any model representation form.14 Over-

street’s [178] conclusions, based on Turing machine analysis of the CS, are slightly different.

By reducing these issues to the Halting Problem, Turing analysis indicates that these prob-

lems are undecidable.

13The authors claim that this contradicts both Overstreet’s and McCabe’s assertions that complexity
depends only on the decision structure (branching) of a program and not on the number of functional
statements. However, Overstreet describes conceptual complexity, not run-time complexity.

14These results seem to contradict those of Yücesan and Schruben [246] that planar graph representations
of simulation models do portend tractable analysis.
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Table 4.4: Evaluation of Event-Oriented Approaches as a Next-Generation Modeling
Framework. Level of Support is given as: 1 - Not Recognized; 2 - Recognized, but Not
Demonstrated; 3 - Demonstrated; 4 - Conclusively Demonstrated.

Requirement Level of Support
Encourages and facilitates the production of model and study
documentation, particularly with regard to definitions, 2
assumptions and objectives.

Permits model description to range from very high to very low level. 3
Permits model fidelity to range from very high to very low level. 3
Conceptual framework is unobtrusive, and/or support 2
is provided for multiple conceptual frameworks.

Structures model development. Facilitates management of model 2
description and fidelity levels and choice of conceptual framework.

Exhibits broad applicability. 2
Model representation is independent of implementing language 3
and architecture.

Encourages automation and defines environment support. 3
Support provided for a broad array of model verification and 3
validation techniques.

Facilitates component management and experiment design. 3

4.5.3 Evaluation

Evaluation of event-oriented approaches based on the identified requirements for a next-

generation modeling framework appears in Table 4.4. Event Graphs and Simulation Graphs

have been well-exercised over the past ten years. While the notation seems expressive and

extensible, no methodology for graph construction has been described. Experience with

SIGMA may yield results in this area.

4.6 Petri Net Approaches

According to Peterson [190], a Petri net is an abstract formal model of information flow.

Named for Carl Petri, the major use of Petri nets has been the modeling of systems which

exhibit concurrency. This most common use is motivated by a desire to analyze this class of

systems – by modeling them as Petri nets, and then manipulating the Petri nets to derive

properties of the modeled systems. As a result, much study has gone into the development

of techniques for analyzing Petri nets. One method of analysis is simulation. Petri nets
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are also, themselves, a modeling tool. They have been suggested as a formalism to model

general systems for the purpose of discrete event simulation. Petri nets are suitable for

modeling systems that can be viewed as a set of events and a set of conditions, and the

relationships among these sets [190, p. 288].

Thus the relationship between Petri nets and DES is somewhat symbiotic: Petri nets

are used to develop DES models, and DES is used to simulate Petri nets when the limits of

analytic techniques are exceeded. The use of Petri nets as a formalism for the development

of discrete event simulation models of general systems is of primary interest here.

The presentation begins with a discussion of the basic, or ordinary, Petri net. Some

common extensions to Petri nets are discussed subsequently.

4.6.1 Definitions

A Petri net is a directed bipartite graph. The graph contains two types of nodes: places

– typically represented by circles, and transitions – typically represented by bars. An arc in

the graph may exist only between places and transitions. In an ordinary Petri net, multiple

arcs between any two nodes are not allowed.

If an arc from a place P to a transition T exists, then P is called an input place of

transition T, and T is called an output transition of place P. Similar definitions hold for

output place and input transition.

At any moment, a place may have 0 or more tokens. Tokens are represented by black

dots in place nodes. A Petri net with tokens is called a marked Petri net. The distribution

of (all) tokens (to places) in a marked Petri net is called its marking.

A Petri net for a single server queueing system is given in Figure 4.6. The graph contains

three places and three transitions. The graph marking indicates that the server is idle and

no customers are waiting. A valuable feature of Petri nets is their ability to model a system

hierarchically. An entire net may be represented by a single place or transition for modeling

at a more abstract level (abstraction), or places and transitions may be expanded into

subnets to provide more detailed modeling (refinement). For example, the service transition

in the Petri net given in Figure 4.6 could be expanded into a “service starts” transition,

a “customer obtains service” place, and a “service ends” transition. Note that the graph

of Figure 4.6 does not contain any timing information, and so is not directly suitable for
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Server Idle

Customer

Service

Customer
Arrives

Customer

Customer Leaves

Ready to Leave

Waiting

Figure 4.6: A Petri Net for a Single Server Queue. The marking indicates that the server
is idle and no customers are waiting.

discrete event simulation, the incorporation of time within a Petri net is discussed below.

A transition node is said to be ready if and only if there exists at least one token in

each of its input places. At any moment, 0 or more ready transitions are chosen (nondeter-

ministically) to fire. When a transition fires, its associated input tokens are removed and

new tokens are placed in each of its output places. In an ordinary Petri net, the firing of a

transition is instantaneous. Two transitions are said to be neighbors if they share at least

one input place.

While nondeterminism is potentially advantageous from a modeling point of view, it

introduces complexity into the analysis of Petri nets. However, Peterson [190, p. 229]

notes that if instantaneous firing of transitions, and a real-valued clock are assumed, the

probability of simultaneous events (transitions) goes to zero.

A net is said to be k-bounded for some integer k if no more that k tokens can be in any

place at the same time. A 1-bounded Petri net is called a safe net.

A Petri net is conservative if the number of tokens in the net is conserved.

A transition is dead in a marking if there is no sequence of transition firings that can

enable it. A transition is potentially firable if there exists some sequence that enables it. A
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transition is live if it is potentially firable in all reachable markings (defined below).

Petri net analysis. Almost all Petri net analytic techniques include the construction

of a reachability tree [190, p. 240]. In a reachability tree the nodes represent markings

of the Petri net and the arcs represent possible changes in state resulting from the firing

of transitions. Tree construction is made finite (even though the reachability set may be

infinite) through a parameterization process. Using this technique, one may determine if a

marking, say, m′ is reachable from some other marking, m.

Common Petri net analysis procedures include analysis for (1) boundedness, (2) con-

servation, (3) coverability, and (4) reachability. The reachability problem for Petri nets,

however, has been shown to be decidable, but intractable [190, p. 249].

Petri nets that allow multiple arcs are often called generalized Petri nets. Addition

of the provision for inhibitor arcs – arcs which indicate that a transition may fire only if

the corresponding place has zero tokens in it – yields a formalism equivalent to a Turing

machine [190, p. 246]. Commonly, most references to “Petri nets” refer to generalized Petri

nets with inhibitor arcs. A discussion of some special extensions and applications of Petri

nets follows.

4.6.2 Timed Petri nets

The basic Petri net definition contains no information regarding the temporal properties

of the model behavior. Timing information may be added to an ordinary Petri net to

produce a Timed Petri net in the following manner:

• Time may be associated with transitions. Each transition T has a time, δ, called the
execution time of T. The usual interpretation of this construct is that if T begins firing
at time t, the input token(s) are removed at t and the output token(s) appear at time
t+ δ.

• Time may be associated with places. Each place P has an associated time, δ. In this
case, if a token appears in in P at time t, then any associated output transition may
not fire until time t+ δ.

Time may be associated with transitions only – the most common version of Timed Petri

nets [173, 197, 233], places only [6, 57], or both transitions and places [123].
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4.6.3 Stochastic Petri nets

Molloy [149] describes a stochastic Petri net (SPN) as a generalized Timed Petri net in

which the time specifications are introduced by associating exponentially distributed firing

times on transitions. Balbo and Chiola [14] present a tool, GreatSPN, which provides the

facilities to build, analyze, execute and animate SPNs.

4.6.4 Simulation nets

Törn [233, 234] describes an approach to discrete event simulation known as the simu-

lation net.15 A simulation net is an extension to the ordinary Petri net which includes:

• generalized Petri net semantics

• inhibitor arcs

• general test arcs

• temporal properties for transitions

• a notation for representing queues

According to [233] the Petri net properties important for simulation are liveness and safe-

ness. Törn [234] describes a tool, SimNet, which directly executes simulation net simula-

tions. Implemented in SIMULA, SimNet provides, among other features, the automatic

collection of common performance measures for queueing systems.

4.6.5 Petri nets and parallel simulation

Not surprisingly, due to the relationship between Petri nets and concurrent systems

(see [197]), the use of Petri nets as a basis for parallel simulation has received significant

attention.

Kumar and Harous [123] describe an approach for the parallel discrete event simulation

of Timed Petri nets based on a conservative protocol in which deadlock avoidance is im-

plemented through a variant of the null message scheme. Nicol and Roy [173] demonstrate

a method for locating and exploiting “lookahead” in a conservative parallel simulation of

Timed Petri nets. They describe an X-windows based graphical tool, pntool, which may

15Törn originally calls these structures simulation graphs.
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Table 4.5: Evaluation of Petri Net-Based Approaches as a Next-Generation Modeling
Framework. Level of Support is given as: 1 - Not Recognized; 2 - Recognized, but Not
Demonstrated; 3 - Demonstrated; 4 - Conclusively Demonstrated.

Requirement Level of Support
Encourages and facilitates the production of model and study
documentation, particularly with regard to definitions, 1
assumptions and objectives.

Permits model description to range from very high to very low level. 1
Permits model fidelity to range from very high to very low level. 3
Conceptual framework is unobtrusive, and/or support 1
is provided for multiple conceptual frameworks.

Structures model development. Facilitates management of model 2
description and fidelity levels and choice of conceptual framework.

Exhibits broad applicability. 3
Model representation is independent of implementing language 3
and architecture.

Encourages automation and defines environment support. 3
Support provided for a broad array of model verification and 3
validation techniques.

Facilitates component management and experiment design. 1

be used to develop Timed Petri net models for the YAWNS simulation environment [174].

Another method, known as the transition firing protocol is described in [228].

4.6.6 Evaluation

Evaluation of Petri net-based approaches with respect to the identified requirements for

a next-generation modeling framework appears in Table 4.5. Petri nets provide a simple

mechanism for the representation of system behavior. However, the conceptual framework

seems too restrictive, and no provisions have been demonstrated for model definitions,

assumptions and objectives. Nor has a higher-level representation been identified. Very

little work is evident regarding the use of Petri nets within the context of an end-to-end

simulation study.
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4.7 Logic-Based Approaches

Simulation model development approaches that provide a basis for formally reasoning

about discrete event simulations (at the model specification level) are investigated in this

section. Proof of correctness dates to [68], and a great deal of literature in exists in the area

of computational logics: in artificial intelligence, software engineering, as well as philoso-

phy. A body of research concerning the application of logic programming to discrete event

simulation has evolved, but the focus of these efforts is mostly at the implementation level,

and so are not examined in this survey. Perhaps the most extensive application of logics in

computer science has been in the arena of real time systems (see [196] for a brief discussion).

These real time, and temporal logics may be suitable for developing discrete event simula-

tion models. However, the efforts along these lines are highly embryonic, and any potential

benefits are speculative. For this reason, and for space considerations, a discussion of real

time and temporal logics is considered beyond the scope of this survey.

4.7.1 Modal discrete event logic

By far the most developed effort in this area is due to Radiya and Sargent [195, 196].

According to [196, p. 4], Zeigler’s systems theoretic work is the major theoretical founda-

tion for discrete event modeling and simulation (DEMS). Radiya and Sargent suggest their

own efforts, as well as Glynn’s [87, 88] work in generalized semi-Markov processes as pos-

sible alternatives for a theoretical DEMS foundation [196, p. 4]. The authors identify the

contributions of their work as follows:

• Identification of important semantic concepts, starting with the two fundamental con-
cepts of instantaneous propositions (events) and interim variables (similar to piecewise
constant state variables) and culminating in the central concept of discrete event (DE)
structure.

• A modal discrete event logic, LDE , for expressing discrete event models. The logic
LDE is defined, independent of its simulation procedures, by specifying its syntax and
semantics with respect to DE structures. In LDE a model of a system is a set of
formulae. The purpose of the semantics is to specify conditions under which a DE
structure can be said to “satisfy” a model in LDE . A DE structure satisfies a model
if the truth values of instantaneous propositions and changes in the values of interim
variables at every instant of the DE structure are completely accounted for by the
model.
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• A simulation procedure for simulating models expressible in a sublogic of LDE. Simu-
lation is defined to be a process of finding a DE structure that satisfies a given model,
and a simulation procedure is an algorithm that defines this process.

Semantic concepts. An instantaneous proposition is a proposition such that: (1) its

truth (occurrence) can be claimed at any instant, and (2) over any bounded interval, the

proposition true (occurs) only at finitely many instants. Used to represent events, this

differs from Nance’s [156] characterization. An event, as defined by Radiya, is not directly

associated with instants or state changes. An occurrence of an event is associated with

an instant but not necessarily a state change. In a queueing network example suggested

by [196, p. 10], neither instants nor state changes are associated with an event “customer

arrival,” but its occurrence must be associated with an instant. Also certain occurrences of

“customer arrival” may not be associated with state changes, e.g. when it coincides with

“customer departure” the number of customers in the system does not change during that

instant.

An interim variable, v, is a variable such that: (1) the claim that v has a value is

meaningful at any instant, and (2) over any bounded interval I that is open on the left

and closed on the right, the value of v changes only finitely many times. Further, every

maximal subinterval of I over which v has the same value is open on the left and closed on

the right.16

The values of propositions and variables at any particular instant are defined by valu-

ations – one type for propositions and another for variables. A representation called the

discrete event trajectory completely describes the behavior of a model by specifying the

values of propositions and variables over all instants. The trajectory provides a basis for

defining a discrete event (DE) structure. The discussion of DE structures as well as the

description of the syntax and semantics of LDE is quite lengthy and so is omitted here. The

reader is referred to [196, pp. 12-31] for details.

Some other issues. The logic LDE places no restrictions on the number of definable

operators. The operators, next, now, null, if, when, whenever, until, while, unless,

16The restriction on the form of the interval is made to distinguish Boolean interim variables from instan-
taneous propositions.
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some and at are defined in [196]. The provision for limitless operators is claimed as a

strength of the approach, however, the authors concede that the model-theoretic semantics

of LDE are more complex than the semantics of the commonly used simulation languages,

procedural programming languages, and mathematical logics such as first order predicate

logic or the temporal logics [196, p. 23]. Further, construction of an LDE model that is well

defined by its semantics but cannot be simulated (because a simulation procedure for it

may not be known) is possible [196, p. 42]. This occurs in practice when the LDE operator,

unless, is utilized in the model specification.

No proof system is defined for LDE , although given the rigorous formal definition of

its semantics it should be possible to do so. The value of the logical foundation provided

by LDE may best be as a methodology for designing discrete event simulation languages –

by focusing on the capability to implement natural and powerful representations of system

behavior. The authors view the ability to prove properties of model specifications as,

potentially, a secondary contribution.

4.7.2 DMOD

Narain [166] describes an approach called DMOD in which a simulation model is viewed

as a 7-tuple consisting of sets of events and timestamps, an initial event, as well as some

ordering relations, lt, eq, time and causes. Using a phone system model, the author demon-

strates a procedure for computing state trajectories and histories, as well as methods for

programming in and formally reasoning about DMOD structures. The work described is

in the very early stages of development, and no conclusions are drawn in the paper. No

subsequent development in DMOD has appeared.

4.7.3 UNITY

Abrams et al. [2, 3] present a method for discrete event simulation based on the UNITY

formalism defined by Chandy and Misra [48]. A methodology for developing simulation

models is described, and the UNITY proof system is used to facilitate formal verification of

model specifications. A discussion is given regarding the mapping of the UNITY programs

to both sequential and parallel architectures. Similar to DMOD, the work described is in

its early stages, and the methodology presented is burdensome to a modeler. The approach
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Table 4.6: Evaluation of Logic-Based Approaches as a Next-Generation Modeling Frame-
work. Level of Support is given as: 1 - Not Recognized; 2 - Recognized, but Not Demon-
strated; 3 - Demonstrated; 4 - Conclusively Demonstrated.

Requirement Level of Support
Encourages and facilitates the production of model and study
documentation, particularly with regard to definitions, 1
assumptions and objectives.

Permits model description to range from very high to very low level. 2
Permits model fidelity to range from very high to very low level. 2
Conceptual framework is unobtrusive, and/or support 1
is provided for multiple conceptual frameworks.

Structures model development. Facilitates management of model 1
description and fidelity levels and choice of conceptual framework.

Exhibits broad applicability. 2
Model representation is independent of implementing language 3
and architecture.

Encourages automation and defines environment support. 2
Support provided for a broad array of model verification and 2
validation techniques.

Facilitates component management and experiment design. 1

also suffers from the lack of a provision for reasoning about temporal properties in UNITY.

4.7.4 Evaluation

Evaluation of logic-based approaches with respect to the identified requirements for a

next-generation modeling framework appears in Table 4.6.

The logic-based approaches to discrete event simulation are on target in one very im-

portant area: they focus the effort on the model. In this manner, implementation details

are less likely to interfere with the formal determination of model correctness. However, the

existing approaches suffer greatly in terms of a methodology and automation. While auto-

matic theorem provers are available, complex assertions must be formulated, in general, by

hand. Furthermore, no provisions are made for a modeler to describe a model in “familiar”

terms such as events, activities, or processes.

These logic-based approaches portend great strides in the development of correct models

and programs, but until the models can be created and analyzed by modelers with limited,

or even no experience in formalisms, these approaches provide little contribution to the
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capabilities needed for realistic use of discrete event simulation.

4.8 Control Flow Graphs

Cota and Sargent [58, 59] introduce a mechanism called a control flow graph (CFG).

Introduced as a conceptual tool for developing parallel simulation algorithms, CFGs are

not proposed as a formalism for model description [59, p. 21]. However, CFGs have been

sufficiently well defined to warrant their inclusion here.

A control flow graph is a directed graph that represents the behavior of an individual

process, or class of processes, in a discrete event model. Each node in the CFG represents

some possible state of the process – a control state or synchronization point – in which the

process is waiting from some condition to become true or for some determinable period of

time to pass. Each action that a process may take from a given state is represented by an

edge exiting the node.

Processes described by CFGs communicate through message passing. Each process has

associated with it, a set of state variables, and sets of input and output channels across

which the process may send and receive messages. A process is said to be a predecessor of

its input channels, and a successor of its output channels. Any number of channels may

exist between two processes. A model that consists of a set of processes defined by CFGs

and channels through which those processes communicate is called a CFG model.

In a CFG model, when a process sends a message across an output channel, that message

immediately becomes available to the process that receives from that channel. Since the

receiving process may not be ready to use the message, each channel may be regarded as

a queue of messages waiting to be processed. When a process removes a message from

an input queue, the process is said to have received that message. The receiving process

decides when to receive the message, but messages must be processed in the order in which

they were sent.

Each event that might take place when a process is in a particular control state is

represented by a directed edge exiting the node that represents that state. Edges leaving a

node are prioritized to break ties. Each edge in a CFG has associated with it an event type,

which defines the action associated with that edge, and an edge condition, which defines the

conditions under which the process takes that action. An edge condition is the conjunction
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Figure 4.7: Control Flow Graph for a Single Server Queue.

of a local condition, which depends only only the state variables of the process, and a global

condition, which can become true due to the arrival of messages from other processes or

due to the passing of time. Each global condition is classified as one of the following:

• Arrival condition. An arrival condition becomes true when some specified input chan-
nel is non-empty. The arrival condition is said to depend on that input channel.

• Time delay condition. A time delay condition becomes true after some determinable
(possibly random) period of time has elapsed.

• Trivial condition. A trivial condition is always true.

An event type is a procedure that can: (1) change the values of state variables belonging

to a process, or (2) send or receive messages.

The behavior of a process described by a CFG may be viewed as a marker, called a point

of control, traveling through a graph. The point of control waits at the control node until

the earliest instant in simulated time at which an edge condition on an edge exiting that

node is true. The event type associated with that edge is then carried out and the point of

control enters the succeeding node by traversing the edge. Edge traversal is also referred to

as an event. If the edge conditions of more than one edge exiting the control node become

true simultaneously, then the edge with higher edge priority is traversed.

4.8.1 Examples

A CFG for a single server queueing system is illustrated in Figure 4.7. This example,

as well as the succeeding one, is from [59]. The CFG contains two control states: (1) I –

representing an idle server, and (2) B – representing a busy server. When in the idle state,

the server waits for a message to arrive across input channel C1 and then enters the busy

state. From the busy state, the server waits for a random period of time, given by X , and
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Figure 4.8: Control Flow Graph for a Single Server Queue with Preemption.

then enters the idle state. Two event types are defined: (1) e1 – receive a message from C1,

and (2) e2 – send a message to C2. Note that the output channel, C2, is not depicted in

the graph. The lines through the edge tails indicate trivial local conditions.

A more complicated example can be made by the addition of preemption to the system.

The graph for this is given in Figure 4.8. In this example, two classes of transactions are

defined. We assume that service of class two transactions takes priority over service of class

one transactions, and an interrupted transaction resumes at the point of interruption. The

CFG contains three control states: (1) I – idle, (2) B1 – busy, serving class one transaction,

and (3) B2 – busy, serving class two transaction. Two input channels, two output channels,

and four state variables are defined. Class one (two) transactions arrive across input channel

I1 (I2), and are sent across output channel O1 (O2). State variable, m1 (m2) is a message

pointer that indicates the class one (two) transaction in service, or preemption, if any.

State variable, r, contains the amount of service time required by a class one transaction.

State variable, s, contains the time at which service on a class one transaction begins. The

following event types are defined:

e1 { begin service of a class one transaction } receive m1 from I1; compute the service time
required and store in r; set s equal to the current clock.

e2 { complete service of a class one transaction } send m1 to O1; set M1 to null to indicate
that no class one transaction is in service.

e3 { begin nonpreemptive service of a class two transaction } receive m2 from I2.

e4 { preempt class one transaction } let r equal r − (current clock − s); receive m2 from
I2.
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Table 4.7: Evaluation of Control Flow Graphs as a Next-Generation Modeling Framework.
Level of Support is given as: 1 - Not Recognized; 2 - Recognized, but Not Demonstrated; 3
- Demonstrated; 4 - Conclusively Demonstrated.

Requirement Level of Support
Encourages and facilitates the production of model and study
documentation, particularly with regard to definitions, 2
assumptions and objectives.

Permits model description to range from very high to very low level. 2
Permits model fidelity to range from very high to very low level. 2
Conceptual framework is unobtrusive, and/or support 2
is provided for multiple conceptual frameworks.

Structures model development. Facilitates management of model 2
description and fidelity levels and choice of conceptual framework.

Exhibits broad applicability. 2
Model representation is independent of implementing language 3
and architecture.

Encourages automation and defines environment support. 2
Support provided for a broad array of model verification and 2
validation techniques.

Facilitates component management and experiment design. 2

e5 { complete service of a class two transaction } send m2 to O2.

Two edges have nontrivial local conditions: (1) L1 is true iff m1 is not null, (2) L2 is true

iff m1 is null. Edge priorities are either 1 or 2, where 1 is considered the highest.

4.8.2 Evaluation

Evaluation of control flow graphs with respect to the identified requirements for a next-

generation modeling framework appears in Table 4.7. The motivation for the development

of control flow graphs is consistent with the philosophy described in Chapter 3. Sargent’s

goal is to provide an implementation-independent model representation. CFG development

is fully grounded in the fundamentals of modeling methodology. However, the graphs are

difficult to construct, and too much information is implicit in the representation. For

example, no information concerning the queue of arrivals is conveyed in the representation

shown in Figure 4.8. Further, the modified process interaction world view that these graphs

support is restricting [61]. Research is ongoing, though, which may help alleviate some of

these inadequacies [77].
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4.9 Generalized Semi-Markov Processes

Applying theory of Markov processes to discrete event systems for the purposes of anal-

ysis predates the advent of digital computers. The vast majority of these efforts exist as an

alternative to simulation. Recently, a paper by Glenn [87] suggests a variant of Markov pro-

cesses, the generalized semi-Markov process, GSMP, as a formal basis for studying discrete

event systems. Radiya and Sargent [196] indicate that GSMPs may provide a uniform formal

basis for studying discrete event systems – both analytically and through simulation. The

GSMP approach is briefly described here. For a more detailed treatment, see [31, 63, 87, 88].

Stochastic processes occurring in most “real-life” situations are such that for a discrete

set of parameters t1, t2, . . . , tn ∈ T, the random variables X(t1), X(t2), . . . , X(tn) exhibit

some sort of dependence. The simplest type of dependence is the first-order dependence

underlying the stochastic process. This Markov-dependence may be defined as follows:

consider a finite (or countably infinite) set of points (t0, t1, . . . , tn, t) � t0 < t1 < t2 · · · <
tn < t and t, tr ∈ T (r = 0, 1, . . . , n) where T is the parameter space of the process {X(t)}.
The dependence exhibited by the process {X(t), t ∈ T} is called Markov-dependence if the

conditional distribution of X(t) for given values of X(t1), X(t2), . . .X(tn) depends only on

X(tn) which is the most recent known value of the process, i.e. if,

P [X(t) ≤ x | X(tn) = xn, X(tn−1) = xn−1, . . . , X(t0) = x0]

= P [X(t) ≤ x | X(tn) = xn]

= F (xn, X ; tn, t)

The stochastic process exhibiting this property is called a Markov process. In a Markov

process, or a variant known as a Markov chain, if the state is known for any specific value of

the time parameter, t, that information is sufficient to predict the behavior of the process

beyond that point [31].

The formulation of GSMPs allows the distribution of an event to depend on the event

itself, the current and previous states, and the event which triggered the last transition.

According to [63, p. 323], the basic building blocks of GSMPs are the probability distribu-

tions of the event lifetimes and the routing probabilities. Also central to a GSMP are its

set of states and set of events. When an event triggers a transition, the GSMP moves from

its current state to some other state with a certain routing probability. It then stays in this
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new state for a certain length of time, until another transition is triggered by some event,

and so on.

The state space S of the GSMP is countable in the general theory, but is often assumed

to be finite. The event set, E, is finite.

A GI/G/1 queue can be modeled as a GSMP with state space S = {0, 1, 2, . . .} where

the current state represents the number of customers in the system.17 When no customer

is present in the system (s = 0), the only possible next-event is the arrival of a customer.

When one or more customers are in the system (s ≥ 1), the possible events are an arrival

or an end of service. If the next event is an arrival (end of service) the GSMP moves from

state s to state s+ 1 (s− 1) with probability one. The interarrival times and service times

are distributed according to their respective cumulative distribution functions.

Embedded in the GSMP is a general state-space discrete time Markov chain, {Xn =

(sn, cn) : n ≥ 0}, where sn is the state occupied immediately following the nth transition [63,

p. 324]. If N (t) is the number of transitions by time t1 the GSMP will be at that time in

state Q(t) = Sn(t). The component cn of the embedded Markov chain is actually a vector

| E | +1 “clocks.” Clock 0 indicates the elapsed time between transitions n− 1 and n. All

other clocks are associated with an event: if event i is active at time tn, where tn is the

epoch of the nth transition, its corresponding clock reading ci, n indicates the elapsed time

since it was generated last.18

The level of formalism demanded to utilize GSMP is seen in the following. The develop-

ment is due to [63] where the parametric inference process for GSMPs is examined. Assume

the distribution of event j depends only on the event itself and an unknown parameter. De-

note the distribution Fj(·; θ). Let F j(·; θ) ≡ 1−Fj(·; θ) be the residual lifetime distribution

of event j. Further, assume that the support of the distributions is (0,∞). This also implies

that the supports of the event distributions do not depend on the unknown parameter. Also

assume that the distribution function Fj(·; θ) of an event j admits a density, fj(·; θ).
Let E(s) be the set of active events in state s, and N (s′, s, i), O(s′, s, i) represent the set

of new and old events respectively. In state s′ when it is event i which just triggered the

transition from state s.

17Note that S is not finite here.
18Clocks may run backwards or forwards; both conventions have been used in the literature.
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The transition density function h(x, x′; θ) of the embedded Markov chain is given by:

h(x = (s, c), x′ = (s′, c′); θ) =
∑

i∈E(s)

{p(s′; s, i; θ)
Fi(ci + c′o; θ)
F i(ci; θ)

·
∏

j∈O(s′,s,i)

F j(c′j; θ)

F j(cj; θ)
I [c′j = cj + c′o]

·
∏

j∈N(s′,s,i)

I [c′j = 0]
∏

j �∈E(s)

I [c′j = −1]}

Where I [·] denotes the indicator function, and appear for consistency.

The modeling power of GSMP may be suitable to capture any discrete event system.

In [94] GSMP and stochastic Petri nets are shown to have equivalent modeling power.

However, provisions for an unobtrusive conceptual framework, higher-level descriptions, life

cycle and methodological support remain to be defined. The GSMP evaluation appears in

the summary (Table 4.8).

4.10 Some Other Modeling Concepts

4.10.1 Hierarchy

As noted in Section 4.3, a basic principle of general systems theory, and its realization

in DEVS-based approaches, is the concept of hierarchy. Recently, a great deal of interest in

the simulation community has been focused on the issue of hierarchical modeling. At first

glance, it would appear that hierarchical modeling and DEVS-based, general systems the-

oretic approaches are one-and-the-same. And while these approaches clearly dominate the

realm of hierarchical modeling, several existing approaches such as the RESearch Queueing

Package Modeling Environment (RESQME) provide hierarchical modeling in a fashion that

is divorced of general systems theory [91]. Nance’s Conical Methodology (see Chapter 5)

also stresses the importance of hierarchical model development. In this section, ongoing

attempts to formally characterize hierarchical modeling are reviewed.

In a panel session conducted at the 1993 Winter Simulation Conference, three basic

approaches to hierarchical modeling were identified [206]:

• Closure under coupling. In this approach models are coupled together to form larger
models. DEVS is an example of this approach.

77



CHAPTER 4. FORMAL APPROACHES TO DISCRETE EVENT SIMULATION

• Metamodels. According to [204], a metamodel is a polynomial (mathematical) model
that relates the I/O behavior of the simulation as a black box. A metamodel is often
a least squares regression model that only contains the input variables necessary to
describe the output behavior of the simulation model over the experimental region.
This approach is not yet viewed as feasible [206, p. 570].

• Specific software frame. Also known as the backbone or base model approach, this
technique allows “plug compatible” submodels to plug into or communicate by passing
messages.

Luna [140] attempts to find a precise characterization of hierarchical modeling. He

points out that of primary importance is the characterization of what constitutes a model.

Luna suggests that discrimination must be made between viewing a model as:

• An abstract concept. This model exists in the mind and has no documented represen-
tation.

• A diagram. This type of graphical model provides a view of the static properties of
the model, but often model behavior must be inferred.

• A mathematical representation. This type of model may be suitable for describing
model dynamics, but often fails to communicate a “picture” of the system.

• An implementation. This is the source, or object, code.

These aspects (of what a model is) can be divided into four categories:

• System aspect. This corresponds to the perceived (conceptual) model of the system.

• Representation aspect. This concerns the expression of the model in some form (graph-
ical, mathematical, or both).

• Implementation aspect. Source code level; the typical level at which users work.

• Organization aspect. This concerns the organization of the model implementation.

Based on the above, Luna identifies four types of model hierarchies:

• Representation. Here, the higher level does not have its own being per se, but is a
representation of the lower level. For example, the U.S. Government may be viewed
as illustrated in Figure 4.9. The government is hierarchically one level above the
individual branches, but the government has no existence separate from the branches.

• Composition. Here, the higher level has its own being and employs the lower level in
its behavior. A typical example of this relation is a system-subsystem relationship.
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Figure 4.9: Hierarchical Modeling – The Representation Relation.

• Substitution. The substitution for the lower level by the higher level in a given model.
This relation encompasses both abstraction by reduction and morphic reduction as a
means of simplifying the model. The basic idea here is to simplify the model with
respect to some measure of complexity.

• Specification. The higher level and lower level are related by type and the lower level is
a more specific type than the higher level. Inheritance mechanisms in object-oriented
design typify this type of relation. For example, an object class car may be defined
in terms of a higher level object class, vehicle. Similarly, an object class motorcycle
may also be defined as a more specific occurrence of the vehicle class.

Luna concludes that the claim that a model is hierarchical needs to be evaluated with

respect to both the model aspect and the hierarchical relation applied. In particular, the

hierarchical relations of representation and composition apply to the representation model

aspect; the relations of specification, composition, and substitution apply to the organization

model aspect, and the composition relation applies to the implementation aspect.

Miller and Fishwick [148] describe the hybrid model theory and the heterogeneous hier-

archical modeling methodology. The methodology is designed to allow a modeler to utilize

multiple formalisms and organize these formalisms hierarchically. The authors identify two

categories of model hierarchies:

• Type-of. This category relates to object-oriented models and is usually the focus
of the software engineering, artificial intelligence and simulation communities. Here
the emphasis is on categorization of entities based on the generalization of static
properties. SES is a type-of hierarchy.

• Part-of. This category can describe either static or dynamic properties and emphasize
the categorization of physical or conceptual composition. DEVS is a part-of hierarchy.
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The hybrid model theory, which descends from the multimodel methodology proposed

by Fishwick and Zeigler [74], is a specialized construct defined in terms of general systems

theory and permits a single model to be hierarchically constructed either by intermodel

or intramodel coordination from five formalisms: (1) Petri nets, (2) Markov systems, (3)

queueing networks, (4) state machines, and (5) block models.

The hierarchy is based on the composition of a system (part-of hierarchy) rather than

the classification of entities as typical in object-oriented simulation: state formalisms (state

machines, Markov systems) model the transition of a system from one discrete event to

another; selective formalisms (queueing networks, Petri nets) model events based on resource

allocation; functional formalisms (block models) model continuous signal-based systems.

4.10.2 Abstraction

The process of abstraction has received much attention in many areas of computer

science. In the context of discrete event simulation modeling, when two models represent

the same reality at different levels of detail, or fidelity, the less detailed model is said to be

the more abstract model.

According to Sevinc [214], model abstraction serves two purposes: (1) it increases our

understanding of models and model behavior, and (2) it may provide us with computa-

tionally more efficient models of the systems we study. He asserts that a theory of model

abstraction is a well-defined formal expression of the relationship between any two models.

It does not attempt identifying ways of abstracting models, but given any two models, the

theory should tell whether they are related via this abstraction mechanism or not. Sevinc

proposes a weakened version of Zeigler’s homomorphisms (see [139]) as a basis for model

abstraction.

Fishwick [73] proposes a number of methods for abstracting processes. These methods

combined with definitions of a process at different levels is suggested to form a partially

ordered graph called an “abstraction network” which in turn is used to study the model

behavior at different levels of detail. A simulation environment, HIRES, is developed to

support this process.
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4.11 Summary

A set of requirements for a next-generation modeling framework is given in Chapter 3.

These criteria are applied to the existing approaches to discrete event simulation modeling

in this chapter. The evaluation is summarized in Table 4.8.

The survey indicates that no existing approach fully satisfies the requirements for a

next-generation modeling framework. The systems theoretic approaches score the highest

with a 2.7, while the generalized semi-Markov process approach score of 1.4 is the lowest

for the approaches surveyed. Four observations are made from the data:

1. An average score below 2.0 indicates that an approach is significantly flawed due to an
incognizance of one or more of the identified requirements. Lack of concept recognition
fundamentally limits the viability of the approach.

2. For the ten requirements identified, “model representation independence” scores high-
est at 3.0. Since each approach surveyed is independent of an SPL or other program-
ming language, this result is not surprising. However, no approach receives a 4 in this
category since none has conclusively demonstrated architecture independence.

3. For the ten requirements identified, “unobtrusive conceptual framework” scores lowest
at 1.375. One way to interpret this result is to observe that the ten requirements
generally fall in one of two categories: (1) representation, or (2) methodology. The
unobtrusive CF requirement is essentially where “the rubber meets the road” in this
set of criteria. It represents the synergism of methodology and representation. The
approaches surveyed tend to support one or the other, and a few have strengths in both
areas. But where methodology meets representation – at the conceptual framework –
the interface is ill-defined.

4. The evaluation treats each of the ten criteria as equally important. A biased evaluation
may be preferred in situations where a set of objectives stipulates that some of the
criteria are more relevant than others. The precedence for such an evaluative approach
is given in [9].

The framework described in Chapter 3 may help to ameliorate the situation given by number

(3) above. Since the framework is based upon a hierarchy of representations, any method-

ology adopted should tend to explicitly support the representation process. Further, the

methodology must define the transformations among representations. Using the holistic

view of discrete event simulation provided by this (or a similarly defined) framework, the

situation that has developed with extant approaches may be less likely to occur.
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Table 4.8: Evaluation Summary. Level of Support is given as: 1 - Not Recognized; 2
- Recognized, but Not Demonstrated; 3 - Demonstrated; 4 - Conclusively Demonstrated.
Methods: CC - Change Calculus; GST - General Systems Theory; ACD - Activity Cycle
Diagrams; EvGr - Event-Oriented Graphs; PN - Petri Nets; LB - Logic-Based; CFG -
Control Flow Graphs; GSMP - Generalized Semi-Markov Process.

Requirement Level of Support

C
C

G
S
T

A
C
D

E
v
G
r

P
N

L
B

C
F
G

G
S
M
P

Encourages and facilitates the production
of model and study documentation, 2 2 3 2 1 1 2 1
particularly with regard to definitions,
assumptions and objectives.

Permits model description to range from 2 2 3 3 1 1 2 1
very high to very low level.

Permits model description to range from 1 2 2 3 3 2 2 1
very high to very low level.

Conceptual framework is unobtrusive, and/or
support is provided for multiple 2 1 1 2 1 1 2 1
conceptual frameworks.

Structures model development. Facilitates
management of model description and fidelity 2 3 2 2 2 1 2 1
levels and choice of conceptual framework.

Exhibits broad applicability. 2 4 3 2 3 2 2 3
Model representation is independent of 3 3 3 3 3 3 3 3
implementing language and architecture.

Encourages automation and defines 2 3 3 3 3 2 2 1
environment support.

Support provided for a broad array of model 2 3 2 3 3 2 2 1
verification and validation techniques.

Facilitates component management and 1 4 2 3 1 1 2 1
experiment design.

average 1.9 2.7 2.4 2.6 2.1 1.7 2.1 1.4
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Chapter 5

FOUNDATIONS

Let us . . . restrict ourselves to simple structures whenever
possible and avoid in all intellectual modesty “clever con-
structions” like the plague.

Edsger Dijkstra, Notes on Structured Programming

In Chapter 3, a philosophy of simulation model development is presented, and an en-

vironment, based upon this philosophy, is described. The Conical Methodology and the

Condition Specification - two pivotal aspects of the environment and its development as a

prototype – provide the foundations for this research effort as well, and are described here.

5.1 The Conical Methodology

The earliest attempts to define a methodology for discrete event simulation can be traced

to the 1960s in the work of Tocher [229, 230, 232], Lackner [124, 125] (see Chapter 4), and

Kiviat [120, 121, 122]. While most of the simulation community concerned itself with the

programming-related aspects of simulation, these efforts brought focus to the fundamental

issues confronting simulation as a model-centered problem solving technique. The subse-

quent decade witnessed the definition of the first comprehensive and well-defined modeling

methodologies designed to provide support throughout the life cycle. Of significance are the

efforts of Zeigler [250], who proposes a framework for discrete event simulation based upon

general systems theory (see Chapter 4), and Nance, who describes the Conical Methodol-

ogy [155, 158, 160].
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5.1.1 Conical Methodology philosophy and objectives

The Conical Methodology (CM) is a model development approach that is intended to

provide neither abstract nor concrete definitions for general systems [155, p. 22]. The CM

adopts the view that model development leads potentially to myriad evolutionary repre-

sentations, but that the mental perception is the initial representation for every model,

and that assistance in the area of mental perception, or conceptualization, is (should be) a

critical aspect of any modeling methodology.

Within the CM, model development begins with a set of definitions. These definitions

should permit an accurate, unambiguous, and complete description of the system consonant

with the objectives of the simulation study. The CM further stipulates the requirement

for a structure by which parts of a model can be related, i.e. model development tools

should provide a discipline for both model composition and model decomposition. The

methodology also asserts that the development task should provide a large part of the

model documentation and that diagnostic assistance to the modeler should be available

throughout the model development process. Specifically, the following objectives for the

CM are identified [155, p. 22]:

1. Assist the modeler in structuring and organizing the conceptual model.

2. Impose an axiomatic development within an apparently free and unrestrictive model
creation system.

3. Utilize model diagnosis to assess measures such as completeness and consistency for
verification purposes and relative model complexity for planning purposes.

4. Produce major model documentation throughout model development as an essential
byproduct of definition and specification but permitting the modeler to expand the
descriptions as deemed necessary.

5. Promote an organized experimental design and monitor the realization of that design
in the experimental model.

The methodology reflects influences of the object-oriented (see [239]), entity-relation-

attribute (see [51]) and automation-based (see [24]) paradigms, and has been demonstrated

to support the larger principles of software engineering – specifically fostering the objectives

of model correctness, testability, adaptability, reusability and maintainability [9].

Concepts in the Conical Methodology conform to the definitions of Chapter 2. The CM

structures the modeling process by identifying two stages of model development: a top down
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model decomposition – the model definition phase, and a bottom-up model synthesis – the

model specification phase. The phases in the methodology provide a pedagogical separation

of the modeling process, but are neither intended to be executed independently nor without

iteration. The methodology encourages model development as a cycling through the two

stages, and places no restrictions on a modeler other than the requirement that object

definition precede object specification for a given object.

5.1.2 Model definition phase

During the model definition phase, a modeler decomposes a model into objects and

subobjects, then names and types the attributes of these objects. This decomposition can

be visualized as a tree with the root of the tree being the model itself (also an object)

and the leaves representing the subobjects at the most detailed level. Thus, a modeler may

view a model through any perspective of object-level granularity by focusing on a particular

level of the development tree. During the model definition phase, the modeler describes the

static aspects of a model.

The Conical Methodology encourages explicit typing; explicit and strong typing permits

analysis of specifications to a greater extent than where typing information is absent [178].

The methodology prescribes that typing be associated with attributes, rather than objects.

This attribute typing follows the taxonomy illustrated in Figure 5.1, and summarized below.

Indicative attributes describe an aspect of an object.

Permanent attributes are assigned a value only once during model execution.
Transitional attributes receive multiple value assignments.

Temporal attributes are assigned values that represent system time.
Status attributes assume values from a finite set of possibilities.1

Relational attributes relate an object to one or more objects.

Hierarchical attributes establish the subordination of one object to another implying
that all characteristics of the subordinate object are descriptive of the superior
object.

Coordinate attributes establish a bond or commonality between two objects.

1This stipulation does not mean to preclude the use of real-valued attributes. However, a finite range
must be identified. Essentially, status transitional attributes encompass all indicative attributes whose values
are not functions of system time.
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Indicative Relational

Attribute
(object description)

(provide knowledge
about object)

(relates an object
to other objects)

Permanent Transitional Hierarchical Coordinate
(value assigned more 

than once)

Status Temporal
(value assigned from (value assigned is

a function of time)

(value assigned once) (non-subordinate bonding)(object subordination)

a finite set of possible values)

Figure 5.1: Conical Methodology Types.

In addition to typing, the dimensionality and range of an attribute should also be pro-

vided during model definition, and the methodology does not preclude an attribute from

having multiple types. At least one attribute is associated with every model: the model

indexing attribute. Typically this attribute is system time, although Nance notes that the

use of a spatial indexing variable is also plausible [155, p. 30].

Very often, relations among objects are described by modelers through the use of

sets [155, p. 28]. Within the CM, a set is an object that can be classified as either a

primitive set or a defined set. In a primitive set (p-set) all member objects must have

identically the same attributes. A defined set (d-set) is an object representing a collection

of objects, not necessarily having the same attributes, defined by an expression evaluation

occurring during model execution. Thus, membership in a p-set is static and can be defined

prior to model execution, whereas membership in a d-set is dynamic. The CM views set

relationships as instances of the general classification scheme noted above. For example, a

coordinate attribute would describe the relation among set members, and the relationship

between the set object and any member would be hierarchical. Set creation defines a set

object (referred to as a set header in [155]) having one or more relational attributes that

provide access to the attribute values of all member objects. Likewise, set deletion removes
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Table 5.1: CM Object Definition for M/M/1 Queue.

Object Attribute Type Range
M/M/1 arrival mean permanent indicative positive real

service mean permanent indicative positive real
system time temporal transitional indicative nonneg real
arrival temporal transitional indicative nonneg real

server server status status transitional indicative (idle, busy)
queue size status transitional indicative nonnegative integer
num served status transitional indicative nonnegative integer
max served permanent indicative positive integer
end of service temporal transitional indicative nonneg real

the relationship established by at least one relational attribute.

5.1.3 Model definition example

As an example of the CM provisions for model definition, consider the CM definition

for a classical M/M/1 queueing model illustrated in Table 5.1.2 Two objects are defined:

the model itself (M/M/1), and the object server. The attributes of the top-level model are

the indexing attribute, system time and attributes for the mean interarrival and service

times, as well as an attribute representing the time of the next arrival. The object server

has attributes indicating its status, the number in its queue, the number served so far, the

maximum number of customers to serve, and the time of the next end-of-service.

5.1.3.1 Meaningful model definitions

Note that associating attributes to objects in a “meaningful” way is outside the influence

of the methodology. Indeed, it may make more “sense” to associate the arrival time with the

server object than with top-level model – especially in light of the association of end service

time with the server object. In defining the Conical Methodology, Nance adopts the view

that over-constraining the model development process potentially more deleterious within

the context of the simulation life cycle than providing too much freedom to the modeler. A

2This example does not detail the important contribution of the Conical Methodology in terms of gener-
ating model documentation and identifying model definitions, objectives and assumptions. In deference to
brevity, we only illustrate the CM provisions for object definition here.
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modeling methodology could provide a more comprehensive set of rules for conceptualizing

a system. However, systems exist which confound the constraints of any methodology. And

the “work-around” required in a highly constrained methodology often results in a very

confusing, and unnatural, model.

Nance views the methodology as but one piece – albeit a piece of primary importance –

in a larger puzzle. Many issues that contribute to the development of “meaningful” models

necessarily fall within the domain of the simulation model specification and documentation

languages (SMSDLs, see Chapter 3) utilized within the simulation support environment.

These issues can also be specific to a particular application domain or target implementation.

Thus, the CM purposefully delineates a set of principles in very broad terms. To go further

would risk defining a rigid approach that is unyielding to new techniques and ever-changing

objectives.

5.1.3.2 Relationship between definitions and objectives

Also worthy of note in the example of Table 5.1 is the relationship of the model definition

to the model objectives. The model defined in the figure could potentially satisfy most

questions of interest, such as the utilization of the server, mean time in service, and mean

time in the queue. But could the total time in the system of the third customer be reported?

The model definition alone does not provide an answer. Whether or not model attributes

must be explicitly defined to facilitate the gathering and reporting of statistical information,

is appropriately relegated to the domain of the SMSDL. The methodology itself, permits

either approach.

5.1.4 Model specification phase

The CM advocates a bottom-up specification process. A modeler starts at the leaves

of the model decomposition tree and describes what effect attributes of one object, by

their value changes, have on attributes of other model objects – thereby describing model

behavior. During the model specification phase, a modeler identifies the dynamic aspects

of a model.

The methodology enunciates the need for a simulation model specification and docu-

mentation language but does not prescribe its form. The CM stipulates that the SMSDL
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should:

1. Exhibit independence of the specification from implementational constraints of simu-
lation programming languages.

2. Allow expression of static and dynamic model properties.

3. Facilitate model validation and verification.

4. Produce documentation as a by-product.

A specification language fulfilling these requirements is described in Section 5.2.

In the M/M/1 example, the partial specification of the attribute status of the object

server may take the form: “status of server equals idle when end of service is true and

queue size is zero.” This partial specification details the state change of the object server

by indicating how one of its status transitional indicative attributes, status, changes value

from busy to idle. Barger [25] observes that status transitional indicative attributes may

provide the key to model specification under the Conical Methodology; Page [182, p. 42]

echoes this assertion.

5.2 The Condition Specification

In his dissertation, Overstreet defines a formalism for simulation model specification in

which the description of model behavior has several useful and desirable properties [178, p.

40]:

1. The formalism is independent of traditional simulation world views.

2. A specification can be analyzed to identify natural components that measure com-
plexity and identify potential problems with the specification.

3. A specification can be transformed to produce additional representations that conform
to traditional simulation world views.

4. Some aspects of a model can be left unspecified without hindering the analyses and
transformations identified above.

5. A model is defined in terms that do not prescribe any particular implementation
techniques, such as the time flow mechanism.

The goal of this formalism, the Condition Specification (CS), is to provide a world-view-

independent model representation that is expressive enough to represent any model and
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concise enough to facilitate automated diagnosis of the model representation. An important

contribution of the CS in this regard, is the precise and explicit delineation of time and state

within a model representation. Thus, given a CS, all model dynamics are easily identifiable

as time-based, state-based or a mixture of the two. In light of the objectives for the CS

development, when the requirements for model diagnosis conflict with flexibility in model

description and syntax, Overstreet favors model diagnosis. As a result, the CS is not

generally intended to function as a language with which the modeler directly works when

constructing a model – although its syntax is no more constraining than a typical simulation

programming language. Several efforts have addressed techniques for extracting a CS from

a modeler via dialog-driven model generators [25, 96, 182]. In these approaches, the model

generator provides a buffer between the modeler and the low-level syntax of the CS. Still,

as indicated in Chapter 3, the precise nature of the conceptual framework for the model

generator in the SMDE is an unresolved issue [22].

5.2.1 Modeling concepts

Overstreet’s development focuses on discrete event simulation modeling. For purposes

of discussion he considers a simulation model to be a model that uses the technique of

progressing through a series of changes in a time ordered fashion [178, p. 45]. The represen-

tation of time (or some indexing attribute used as a surrogate) is considered fundamental to

the simulation technique. In essence, the term simulation refers to a technique; a simulation

model is a model which employs the simulation technique. A simulation model is defined

as a discrete event model if all object attributes, other than system time, are represented

as changing value only a countable number of times during any simulation run, under the

assumption that the termination condition is met eventually [178, p. 51].

Overstreet defines a simulation run as the act of using a simulation model to provide

data about the behavior of the model, whereas a collection of simulation runs designed to

generate a set of data about the model behavior is considered a simulation experiment [178,

p. 46].

Fundamental to Overstreet’s approach is the characterization of: (1) a simulation model

specification and (2) a simulation model implementation.
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5.2.1.1 Model specification

A model specification (MS) is a quintuple: 〈Φ,Ω,Γ, τ,Θ〉 where:

Φ is the input specification. The input specification provides a description of the information
the model receives from its environment.

Ω is the output specification. The output specification provides a description of the in-
formation the environment receives from the model.3 Attributes used in the output
specification serve two functions:

1. If the model is part of a larger model, they provide information needed to coor-
dinate model components.

2. Reporting of model behavior (a) to support the model objective(s), and (b)
to support model validation. Attributes doing the former may affect model
behavior, attributes accomplishing the latter do not.

Γ is the object definition set.4 An object definition is an ordered pair, 〈O,A(O)〉, where
O is the object and A(O) is the object’s attribute set. During a simulation run,
several instances of the same object “type” may exist. However they are at all times
distinguishable by the value of at least one of their attributes.5

A model attribute set, A(M, t) is the union of all object attribute sets for a model M
that exists at system time t. This set is not time invariant. It is based not only on a
particular simulation run for the model, but for a point in time for that run. (Note,
A(O) is time invariant for the lifetime of O.)
The state of an object, S(O, t) at system time t for and object O is defined by the
values of all its attributes. Likewise, the state of the model, S(M, t) is defined by the
values of the attributes in A(M, t). A change in the value of an attribute constitutes a
state change both in the model and the object with which the attribute is associated.
A model attribute set cannot be assumed to provide a basis for a set of state vari-
ables [178, p. 52]:

A set of variables for a system form a state set if the set, together with
future system inputs, contain enough information to completely determine
system behavior.

In order to establish a set of state variables, the model attribute set must be augmented
with “system variables” such as those required to implement scheduling statements,
list management, and so on.

3The input specification and the output specification can be combined to form a boundary specification.
Either way, the communication requirements between a model and its environment must be completely
defined.

4Overstreet assumes an object-based view when specifying a model. As noted in Chapter 2, while
the identification of objects is not essential to model specification, the object-based perspective is highly
expedient. Nonetheless, attributes (or variables) must be defined in any model specification.

5Overstreet [178, p. 49] notes that his teatment of object specification is abbreviated. For instance, no
mechanism for considering “sets” of objects is defined.
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τ is the indexing attribute. Commonly this attribute is referred to as system time. While
not mandatory, system time is usually one of the model inputs and if so, the model
does not describe how it changes value. The indexing attribute, τ, provides a partial
ordering of the changes that occur within the model during any simulation run.

Θ is the transition function. The transition function for a simulation model specification
contains each of the following:

1. An initial state for the model. The initial state defines values for all attributes
of objects that exist at initiation (model “start up”) including an initial value
for system time. It must also include the scheduling of at least one determined
event.

2. A termination condition.
3. A definition of the dynamic behavior of the model, describing the effect each

model component has on other components, the model response to inputs, and
how outputs are generated. The nature of this specification depends on the
language used. Any form may be used as long as it unambiguously defines model
behavior.

The MS describes how a model behaves over time, but the MS itself is time invariant.

5.2.1.2 Model implementation

Let A(M, t) be the model attribute set for a model specification M at time t. A model

specification is a model implementation if,

1. For any value of system time t, A(M, t) contains a set of state variables.

2. The transition function describes all value changes of those attributes.

Thus, if “system variables” have been added to the object specification set so that

A(M, t) will always contain a state set, then the transition description also contains a

complete description of how these additional attributes change value.

Since A(M, t) typically does not contain a set of state variables, a primary function

of a simulation programming language (SPL) is to augment the attributes of the model

specification as necessary to create a state set. The SPL must also augment the transition

function as necessary to accommodate the additional attributes. Thus, the nature of the

implementation of a simulation model varies according to the representational mechanism.

A model implementation provides the basis for a model execution – which is the in-

stantiation of the actions described by the model implementation on some suitable device,

typically a digital computer.
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5.2.2 Condition Specification components

A Condition Specification of a model consists of two basic elements: a description of the

communication interface for the model and a specification of model dynamics [178, p. 86].

The specification of model dynamics can be further divided into an object specification and

a transition specification. The CS also identifies a report specification designed to provide

details about statistical reporting of simulation results. These four components of the CS

are briefly outlined in this section. Some of the CS provisions for model analysis are detailed

in Section 5.2.3.

5.2.2.1 System interface specification

The system interface specification identifies input and output attributes by name, data

type and communication type (input or output). Overstreet assumes that the communica-

tion interface description can be derived from the internal dynamics of the model and can

be system generated. Any CS must have at least one output attribute [179].

5.2.2.2 Object specification

The object specification contains a list of all model objects and their attributes. The

CS enforces typing for each attribute similar to those types used in Pascal: integer, real,

Boolean, or list values (enumerated typing). An additional type, time-based signal, is

provided which enables the scheduling of attribute value changes, thus providing the means

to relate simulation time to model state.

5.2.2.3 Transition specification

A transition specification consists of a set of ordered pairs called condition-action pairs.

Each pair includes a condition and an associated action. A condition is a Boolean expres-

sion composed of model attributes and the CS sequencing primitives, when alarm and

after alarm. Model actions come in five classes: (1) a value change description, (2) a

time sequencing action, (3) object generation (or destruction), (4) environment communi-

cation (input or output), or (5) a simulation run termination statement. The transition

specification can be augmented by a list of functions (function specification) utilized by
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a modeler to simplify the representation of model behavior, although Overstreet does not

prescribe a form for the specification of functions.

Condition-action pairs (CAPs) with equivalent conditions are brought together to form

action clusters. Action clusters (ACs) represent all actions which are to be taken in a model

whenever the associated condition is true.

Besides when alarm and after alarm, the CS provides several other primitives: set

alarm, and cancel which manipulate the values of attributes typed as time-based sig-

nals, create and destroy which provide instance manipulation for “temporary” objects,

and input and output which provide communication with the model environment. Two

conditions appear in every CS: initialization and termination. Initialization is true only at

the start of a model instantiation (before the first change in value of system time). The

expression for termination is model dependent and may be time-based, state-based, or a

combination of time- and state-based.

5.2.2.4 Report specification

The syntax for report generation is undefined. Overstreet separates the report spec-

ification from the Condition Specification noting that this is not mandatory, but often

desirable since typically many “computations” are required to gather and report statistics

that in-and-of-themselves do not prescribe model behavior [178].

5.2.2.5 CS syntax and example

The syntax for the CS primitives is given in Table 5.2. Table 5.3 and Figures 5.2 through

5.4 contain a CS description of an M/M/1 queueing model.

5.2.3 Model analysis in the Condition Specification

A key issue for model analysis is the notion of model specification equivalence. Over-

street [178] offers definitions for model specification equivalence, noting that what is intu-

itively easy to understand is somewhat difficult to define mathematically. Intuitively, we

accept that two model specifications are equivalent if and only if they can be used inter-

changeably. Certainly two model specifications can be used interchangeably if they produce

identical output when presented with identical input. But two model specifications may also
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Table 5.2: Condition Specification Syntax.

Name Syntax Function

Value Change <objectName>.attribute := newValueExpression Assign attribute
Description values.

Set Alarm set alarm( alarmName, alarmTime <, argList> ) Schedule an alarm.

When Alarm when alarm( alarmName ) Time sequencing
condition.

After Alarm after alarm( alarmName & boolExpr <, argList> ) Time sequencing
condition.

Cancel cancel( alarmName <, alarmId> ) Cancel previously
scheduled alarm.

Create create( objectName<[instanceId ]> ) Create new model
object.

Destroy destroy( objectName<[instanceId ]> ) Eliminate a model
object.

Input input( attribList ) Receive input from
model environment.

Output output( attribList ) Produce output to
model environment.

Stop stop Terminate simulation
run.

Input attributes:
arrival mean - positive real
service mean - positive real

max served - positive integer

Output attribute:
server utilization - positive real

Figure 5.2: M/M/1 System Interface Specification.
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Table 5.3: M/M/1 Object Specification.

Object Attribute Type Range
Environment arrival mean positive real

service mean positive real
system time real
arrival time-based signal

server server status ennumerated (idle, busy)
queue size nonnegative integer
num served nonnegative integer
max served nonnegative integer
end of service time-based signal

{Initialization}
initialization:

INPUT(arrival mean, service mean, max served)
CREATE(server)

queue size := 0

server status := idle

num served := 0

SET ALARM(arrival, 0)

{Arrival }
WHEN ALARM(arrival):

queue size := queue size + 1

SET ALARM(arrival, negexp(arrival mean))

{Begin Service}
queue size > 0 and server status = idle:

queue size := queue size - 1

server status := busy

SET ALARM(end of service, negexp(service mean))

{End Service}
WHEN ALARM(end of service):

server status := idle
num served := num served + 1

{Termination}
num served≥ max served:

STOP

PRINT REPORT

Figure 5.3: M/M/1 Transition Specification.
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Part I

whenever server status changes

Report(system time, server status)

at start of simulation

Report(system time, server status)

at end of simulation

Report(system time, server status)

Part II

program compute server utilization

var former time : real

server status : {busy, idle}
system time : real;

total busy time : real

total busy time := 0.0

read(system time, server status)

former time := system time

while not eof do
read(system time, server status)

if server status = busy then

total busy time := total busy time + (system time - former time)

former time := system time

end while

write(“server utilization: ”,total busy time / system time)

end program

Figure 5.4: M/M/1 Report Specification.
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be used interchangeably if both satisfy the model objectives – even if their external behaviors

differ. Equivalence under model objectives is an extremely difficult thing to establish; while

one model may “do more” than another, if both accomplish the study objectives then the

two may be used interchangeably. This is an issue of significance, in that, for reasons of en-

hanced software quality (lower maintenance costs, etc.) we desire models that exactly solve

our problems – although we want these models to be readily extensible should the problems

we wish to solve using the model change in some way. This “general” problem of model

specification equivalence is obviously NP-complete [178, p. 269]. Overstreet’s examination,

however, focuses on the (slightly more tractable) issue of specification transformations as

they affect specification equivalence.

Definitions for specification equivalence can have either an analytic or statistical basis.

Using a statistical approach, a probability statement with the equivalence of two (or more)

specifications is generated based on the output of implementations of each. Alternatively,

analytic methods can be used to determine if different specifications imply “equivalent”

model actions under “equivalent” circumstances [178, p. 117].

Two types of equivalence are identified in [178]:

Structural equivalence. Two model specifications are structurally equivalent with respect to
a set of model attributes if (1) the condition sets are equivalent with respect to those
attributes, and (2) identical model actions (if stochastic, variates must be from the
same distribution) affecting the set of model attributes are specified for corresponding
conditions.

External equivalence. Two model specifications are externally equivalent with respect to
a set of model attributes if they specify identical output for those attributes when
provided identical input.

5.2.3.1 Condition Specification model decompositions

For any given model, the set of condition-action pairs may be very large, and although

the CS is designed to be a form for automated model diagnosis, many “interesting” questions

cannot be automatically answered. Thus, the CS must provide forms which are accessible

– in some sense – to the human analyst.

The most obvious way of organizing CAPs is by grouping them into action clusters

as described in the previous section. Still, an AC-oriented CS may have on the order

of hundreds or thousands of ACs – too many independent pieces to deal with effectively.
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In addition to the action cluster aggregation, Overstreet defines several “decompositions”

which provide varying levels of model description by couching the same information – the

relationship among model conditions and model actions – in a variety of ways. These

decompositions are briefly discussed here. The following taxonomic description of attributes

within CAPs provides the basis for much of the subsequent discussion [178, p. 120]:

Control attributes. Attributes that provide the information needed to determine when the
action should occur. These are the attributes that occur in the condition expression.
All CAPs (except those used for model initialization) have control attributes.

Input attributes. Attributes that provide the data to be used to set new values for output
attributes or schedule future actions. Not all CAPs have input attributes.

Output attributes. Attributes that change value due to the action. Not all CAPs have out-
put attributes. (Those that have none cannot influence subsequent model behavior.)

Object decomposition. One approach to defining the behavior of a model is to define

individually the behavior of each object “class” in the model. Assuming a CS as a basis,

the attributes in each CAP can be used to associate the CAP with one or more model

objects. Thus, the CAPs associated with an object describe the object’s behavior. This

object-based description may be realized in two ways: (1) all model actions affecting an

object (passive object), or (2) all model actions performed by the object (active object).

Overstreet’s presentation adopts the latter approach.

An object specification may be constructed by identifying for every model object, O,

two types of CAPs: all CAPs with a control attribute of O, and all initialization CAPs with

an output attribute of O. This structure has the advantage that it decomposes a model

specification into a collection of smaller, more manageable units, but has the disadvantage

that much of the information is redundant (the same CAPs appearing in many object

specifications), and any notion of sequencing in model actions is difficult to detect.

Cutset decomposition. Another means of decomposing a model specification is in the

identification of “minimally connected” submodels, where minimally connected refers to

some measure of the interactions between groups of action clusters. Since action cluster

interaction occurs through the use of model attributes, this type of decomposition involves

developing an action cluster interaction graph which is a directed graph in which the action

clusters in the model are the nodes and the attributes that “connect” them are the arcs.
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The model may then be decomposed into two (or more) minimally interactive submodels

by partitioning the graph into nonempty subgraphs with minimal arcs connecting them.

This technique, however, is sensitive only to the number of potential links among action

clusters and not to the possible frequency of communications. Further details of the graph

representations of a CS are given in Section 5.2.3.2.

Traditional world-view decompositions. Since the CS captures explicit descriptions

of all model actions as having a time-base, a state-base or both, and associates attributes

with model objects, a CS may be translated into representations adopting the locality [178,

p. 164] of traditional world views. To produce an event scheduling orientation of a CS, the

CAPs are organized around when alarms – by generating a set of subgraphs from the

action cluster incidence graph (ACIG) representation (defined subsequently) which contain

a single time-based action cluster and all the state-based action clusters reachable from

it without passing through another time-based action cluster – thus describing a model

exhibiting a locality of time. Similarly, an activity scanning approach may be captured by

creating subgraphs oriented around the state-based ACs in an ACIG (providing a locality of

state), and a process interaction orientation may be generated by creating subgraphs of the

ACIG that are actions as they relate to objects within the specification (locality of object).

Overstreet demonstrates that any CS may be automatically translated into an equivalent

event scheduling, activity scanning, or process interaction model description, thus exhibiting

the independence of the CS from these traditional conceptual frameworks [178].

5.2.3.2 Graph-based model diagnosis

Much of the analysis provided by the CS is defined on graph representations of the model

specification (and the matrix equivalents of the graphs). The most useful graph forms are

described below. For further details see [163, 164, 194, 238]. A summary of the analyses

defined for these representations is given in Table 5.4 (adapted from [164]).

Action cluster attribute graph. We define the action cluster-attribute graph (ACAG)

as follows. Given a Condition Specification with k time-based signals, m other attributes,

and n action clusters, then G, a directed graph with k + m + n nodes is constructed as
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Table 5.4: Summary of Diagnostic Assistance in the Condition Specification.

Category of Diagnostic Properties, Measures, or Techniques Basis for
Assistance Applied to the Condition Specification Diagnosis

Analytical: Determination Attribute Utilization: No attribute is defined ACAG
of the existence of a that does not effect the value of another unless
property of a model it serves a statistical (reporting) function.
representation.

Attribute Initialization: All requirements for ACAG
initial value assignment to attributes are met.

Action Cluster Completeness: Required state ACAG
changes within an action cluster are possible.

Attribute Consistency: Attribute typing during ACAG
model definition is consistent with attribute
usage in model specification.

Connectedness: No action cluster is isolated. ACIG

Accessibility: Only the initialization action ACIG
cluster is unaffected by other action clusters.

Out-complete: Only the termination action ACIG
action cluster exerts no influence on other action
clusters.

Revision Consistency: Refinements of a ACIG
model specification are consistent with the
previous version.

Comparative: Measures Attribute Cohesion: The degree to which AIM
of differences among attribute values are mutually influenced.
multiple model
representations. Action Cluster Cohesion: The degree to ACIM

which action clusters are mutually influenced.

Complexity: A relative measure for the ACIG
comparison of a CS to reveal differences
in specification (clarity, maintainability, etc.) or
implementation (run-time) criteria.

Informative: Characteristics Attribute Classification: Identification of the ACAG
extracted or derived function of each attribute (e.g. input, output,
from model representations control, etc.).

Precedence Structure: Recognition of ACIG
sequential relationships among action clusters.

Decomposition: Depiction of coordinate or ACIG
subordinate relationships among components of a CS.

101



CHAPTER 5. FOUNDATIONS

Arrival

Initialization

Begin Service

End Service

Termination

arrival

service_mean

end_of_service

server_status

num_served

arrival_mean

queue_size

max_served

Arrival

Initialization

Begin Service

End Service

Termination

arrival

service_mean

end_of_service

server_status

num_served

arrival_mean

queue_size

max_served

(b)  influence of attributes on action clusters(a)  influence of action clusters on attributes

Figure 5.5: The Action Cluster Attribute Graph for the M/M/1 Model.

follows:6

G has a directed, labeled edge from node i to node j if

(1) node i is a control or input attribute for node j, an AC,

(2) node j is an output attribute for node i, an AC.

The ACAG represents the interactions between action clusters and attributes in the CS;

specifically, the potential for actions of one AC to change the value of an attribute and the

influence of an attribute on the execution of an AC are shown in the ACAG. The ACAG

for the M/M/1 specification given in the previous section is illustrated in Figure 5.5.

Since the ACAG is a bipartite graph, it may be represented using two Boolean ma-

6Overstreet [178] differentiates interactions in the ACAG. He depicts the interactions among ACs and
time-based signals (as output attributes) with dashed edges, to denote a time-delayed interaction. However,
the fact that this distinction is not made in the matrix forms for the ACAG raises questions regarding its
value. The characterization of time-delayed interactions in an ACAG is omitted here. Interactions between
an AC and its output attributes are considered instantaneous irrespective of attribute type. Time-delayed
interactions are important to recognize, and do occur, but only between action clusters (see ACIG).
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trices: the attribute-action cluster matrix (AACM) and the action cluster-attribute matrix

(ACAM). For a CS with m action clusters (ac1, ac2, ..., acm), and n attributes (a1, a2, ..., an)

The AACM is an n by m Boolean matrix in which:

b(i, j) =
1 if edge(ai, acj) exists in the ACAG

0 otherwise

And the ACAM is an m by n Boolean matrix where:

b(i, j) =
1 if edge(aci, aj) exists in the ACAG

0 otherwise

From these two matrices, two other matrices may be formed, the attribute interaction

matrix (AIM),

AIM = AACM × ACAM

and the action cluster interaction matrix (ACIM),

ACIM = ACAM × AACM

Action cluster incidence graph. An action cluster incidence graph (ACIG) is a directed

graph in which each node corresponds to an AC in the CS. If, during the course of any

given implementation of the CS modeled, the actions in one action cluster, ACi, cause the

condition for another action cluster, ACj, to become true (at either the same simulation

time at which ACi is executed or at some future time by setting an alarm) then there is a

directed arc from the node representing ACi to ACj . By convention this arc is depicted as

a dotted line if ACi sets an alarm that is used in the condition for ACj , otherwise the arc

is depicted as a solid line. If the condition on ACj is a when alarm then ACj is referred

to as a time-based successor of ACi. If the condition on ACj is an after alarm then ACj

is referred to as a mixed successor of ACi. Otherwise ACj is referred to as a state-based

successor of ACi.

Formally, one may construct an ACIG for a CS consisting of a set of ACs ac1, ac2, . . . , acn
according to the algorithm in Figure 5.6. Note that this algorithm generates an ACIG that

completely depicts the potential sphere of influence of each AC in the specification, that

is when an output attribute of an action cluster is a (state-based or time-based) control
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For each 1 ≤ i ≤ n, let node i represent aci
For each aci, partition the attributes into 3 sets:

Ti = {control attributes that are time-based signals}
Ci = {all other control attributes}
Oi = {output attributes}

For each 1 ≤ i ≤ n,

For each 1 ≤ j ≤ n,

Construct a solid edge from node i to node j if Oi ∩ Cj �= ∅
Construct a dashed edge from node i to node j if Oi ∩ Tj �= ∅

Figure 5.6: Algorithm for Constructing an Action Cluster Incidence Graph.

attribute of another (not necessarily distinct) action cluster. However, in the general case,

many of these “interactions” may never occur. For instance if ACi has an output attribute

that is involved in the Boolean expression on the condition, denoted p, for ACj , then there

is a solid arc in the ACIG from ACi to ACj . However, if the postcondition for ACi (the

values of model attributes following the “execution” of ACi) implies ¬p, then the execution

of ACi can never cause the execution of ACj and the arc can safely be removed from the

graph. Overstreet shows that no algorithm can be described to completely simplify an

ACIG [178, p. 271]. However, Puthoff [194] describes an expert system approach to this

type of precondition/postcondition analysis for ACIG simplification, noting near-optimal

results for the model specifications considered. The simplified ACIG for the M/M/1 model

is given in Figure 5.7.

5.2.4 Theoretical limits of model analysis

The following are brief descriptions of some important results from [178, Ch. 8]. We

include them here due to their relevance to subsequent development (Chapters 6 through 9).

For complete details refer to [178].

Definitions.

• Two sequences of model actions in two implementations of a model specification are
equivalent if execution of either at a particular instant in an instantiation will produce
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Figure 5.7: The Simplified Action Cluster Incidence Graph for the M/M/1 Model.

identical results.

• Two action sequences, A and B, are order independent if the execution of action
sequence A followed immediately by the execution of action sequence B is equivalent
to the execution of action sequence B followed immediately by the execution of action
sequence A.

• A CS is trivial if the termination condition must be met at the same instant as the
initialization of the model.

Properties.

• A CS is finite if in any instantiation of it, when given valid input data, only a finite
number of action instances occur before the termination condition is met.

• If any actions of a CS are subject to stochastic influences, then the executions of two
implementations need not produce identical output. But if two implementations of
a CS are possible in which the output of their executions would differ, even if the
stochastic behaviors of the implementations were identical and the executions used
identical input, then the CS is ambiguous.

• A CS is complete if, at each instant in any instantiation of it, either the termination
condition is met or at least one additional action instance is pending.

• A CS is accessible if each action prescribed in the specification can occur for some
instantiation of the CS.
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• A CS is connected if the completely simplified ACIG with the initialization node
removed is connected.

Results.

• Any finite model specification is complete.

• Any Turing Machine specification can be transformed into a Condition Specification.

• No algorithm exists to determine if a CS is finite.

• No algorithm exists to determine if two model actions are order independent.

• No algorithm exists to determine if a CS is ambiguous.

The actions of two contingent action clusters should be order independent if their con-

ditions can be simultaneously true in any instantiation of the CS. If this property of order

independence is not satisfied, the CS is said to have the property of state ambiguity.

If two determined action clusters can be scheduled to occur at the same instant in

some simulation run, then either they should be order independent or sufficient ordering

information must be provided in the CS to establish priority. If this is not true, the CS is

said to have the property of time ambiguity.

• No algorithm exists to determine if a CS has the properties of state or time ambiguity.

• No algorithm exists to determine if a CS is complete.

• No algorithm exists to determine if a CS is accessible.

• Connectivity implies accessibility.

• Let X be a CS containing only the accessible action clusters of a CS Y. X is equivalent
to Y with respect to all attributes of X.

• For any finite CS, each contingent action instance (other than initialization) is caused,
directly or indirectly, either by initialization or by a determined action instance coin-
cident in time with the contingent action instance.

• Any nontrivial finite CS contains at least one attribute that is a time-based signal.

• No algorithm exists to determine if two Condition Specifications are externally equiv-
alent.

• No algorithm exists to determine if two conditions can be simultaneously true in any
simulation run based on the CS.

• No algorithm exists to transform a CAP-based CS into an AC-based CS with a min-
imum number of ACs.
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Table 5.5: Evaluation of the CM/CS Approach as a Next-Generation Modeling Framework.
Level of Support is given as: 1 - Not Recognized; 2 - Recognized, but Not Demonstrated; 3
- Demonstrated; 4 - Conclusively Demonstrated.

Requirement Level of Support
Encourages and facilitates the production of model and study
documentation, particularly with regard to definitions, 3
assumptions and objectives.

Permits model description to range from very high to very low level. 2
Permits model fidelity to range from very high to very low level. 3
Conceptual framework is unobtrusive, and/or support 2
is provided for multiple conceptual frameworks.

Structures model development. Facilitates management of model 3
description and fidelity levels and choice of conceptual framework.

Exhibits broad applicability. 3
Model representation is independent of implementing language 3
and architecture.

Encourages automation and defines environment support. 3
Support provided for a broad array of model verification and 4
validation techniques.

Facilitates component management and experiment design. 3

• No algorithm exists to generate a completely simplified ACIG.

• No algorithm exists to determine the actual successors of an action cluster in a CS.

• No algorithm exists to determine if a CS is connected.

• Structural equivalence implies external equivalence.

5.3 Evaluation

We denote the model development approach given by the Conical Methodology in con-

junction with the Condition Specification as its model specification form, as the CM/CS

approach. The CM/CS approach is evaluated with respect to the requirements for a next-

generation modeling framework (identified in Chapter 3) in Table 5.5.

The CM/CS approach compares favorably with the approaches surveyed in Chapter 4.

However, the CM/CS is still far from fully demonstrative of all the criteria. Much of the

remainder of this research describes a widening of the CS spectrum in an effort to strengthen

the CM/CS approach as a next-generation modeling framework.
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Chapter 6

MODEL REPRESENTATION

In the interest of clearness, it appeared to me inevitable that I
should repeat myself frequently, without paying the slightest
attention to the elegance of the presentation.

Albert Einstein, Relativity

In Chapter 3, a philosophy of simulation model development is described and a model

development abstraction consistent with this philosophy is proposed. The abstraction stip-

ulates a hierarchy of representations managed by a single, coherent, underlying method-

ology. The argument is made that this abstraction may enable the realization of a next-

generation modeling framework where emerging technologies and system-level requirements

can be cost-effectively incorporated into the simulation life cycle. In this chapter, and those

that succeed it, the feasibility of this argument is demonstrated utilizing Nance’s Conical

Methodology. The approach taken regarding model representation within the hierarchy is

neither top-down nor bottom-up. Investigation regarding the nature of the highest-level

form(s) has persisted within the context of the SMDE research effort since its inception,

and continues to occupy a prominent position (see [66]). The facilities and capabilities of

general purpose languages (GPLs) and simulation programming languages (SPLs) are also

well-studied. The approach taken here may best be described as inside-out. Overstreet’s

Condition Specification is assessed as most suited to occupy a mid-level position within

the hierarchy indicated by the framework – specifically as a form for model analysis. Its

relationship to both the envisaged higher-level and lower-level forms is addressed in Chap-

ters 6 through 9. By undertaking this investigation in an inside-out manner, the goal is

to facilitate a proper recognition of, and reconciliation between, the requirements of the
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highest-level forms (as dictated primarily by the theories of modeling methodology) and

those of the lowest-level forms (as dictated primarily by system-level constraints).

6.1 Preface: Evaluating the Condition Specification

Overstreet never intends the CS as a modeler-level language. The program-like syntax

demands at least some buffering mechanism between the CS and a modeler. Similarly, the

statistical and reporting capabilities of the CS are not completely defined; nor are mecha-

nisms for list processing and time-flow described. These facilities, required for model imple-

mentation, are correctly viewed as too low-level for a specification language. Accordingly,

the CS is most suited to a mid-level position in the transformational hierarchy, primarily

serving as a target form for automated model diagnosis. This being established, several

issues must be addressed.

1. If a narrow-spectrum approach is adopted, a mid-level representation must exhibit
congruence with both the higher-level and lower-level representations. What can be
established regarding the CS in this area?

2. Can the CS be adapted to provide wide-spectrum support?

3. What is the nature of the highest-level (modeler generated) representation(s)?

4. What is the nature of the underlying target implementations?

5. Can the CS be adapted – in either a narrow-spectrum or wide-spectrum approach –
without sacrificing the analysis provided by the language?

In the following sections, the CS is evaluated through its application to a set of examples.

The language evaluation is such that the conclusions are applicable in the context of either a

narrow-spectrum or wide-spectrum approach, although the primary focus of the remainder

of this research is on widening the spectrum of the CS. The narrative is structured as a tuto-

rial, explicating the model development process under the Conical Methodology without an

explicit description of the highest-level representation form(s). For each example, observa-

tions are made regarding both model definition and model specification. This enables some

evaluation and discussion of the Conical Methodology, in addition to that involving the CS.

This seems appropriate given the observation from Chapter 4 that the relationship between

methodology and representation is a symbiotic one. Relevant adaptations and suggestions

regarding the CS accompany the examples.
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Figure 6.1: MVS System.

Table 6.1: MVS Interarrival Times.

Type of User Interarrival Times Mean
Modem 300 User Exponential 3200 Seconds
Modem 1200 User Exponential 640 Seconds
Modem 2400 User Exponential 1600 Seconds
LAN 9600 User Exponential 266.67 Seconds

6.2 Example: Multiple Virtual Storage Model

Balci [19] presents an example involving a multiple virtual storage (MVS) batch com-

puter system. The MVS operates with two central processing units (CPUs). Users submit

batch programs to the MVS by using the submit command on an interactive virtual memory

(VM) computer system running under the CMS operating system. As shown in Figure 6.1,

the users of MVS via VM/CMS are classified into four categories: (1) users dialed in by

using a modem with 300 baud rate, (2) users dialed in by using a modem with 1200 baud

rate, (3) users dialed in by using a modem with 2400 baud rate, and (4) users connected to

the local area network (LAN) with 9600 baud rate. Each user develops the batch program

on the VM/CMS computer system and submits it to the MVS for processing. Based on

collected data, assume that the interarrival times of batch programs to the MVS with re-

spect to each user type are determined to have an exponential probability distribution with

corresponding means as shown in Table 6.1.

A batch program submitted first goes to the job entry subsystem (JES) of MVS. The
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Table 6.2: MVS Processing Times.

Facility Processing Times Mean
JESS Exponential 112 Seconds
CPU1 Exponential 226.67 Seconds
CPU2 Exponential 300 Seconds
PRT Exponential 160 Seconds

JES scheduler (JESS) assigns the program to processor 1 (CPU1) with a probability of 0.6

or to processor 2 (CPU2) with a probability of 0.4. At the completion of program execution

on a CPU, the output of the program is sent to the user’s virtual reader on the VM/CMS

with a probability of 0.2 or to the printer (PRT) with a probability of 0.8. Assume that

all queues in the MVS system are first-come-first-served and each facility processes one

program at a time. The probability distribution of the processing times for programs by

each facility is given in Table 6.2.

Assuming that the simulation model reaches steady state after 3,000 programs, simulate

the system for 15,000 programs in steady state and construct confidence intervals for the

following performance measures (known values given in parentheses):

1. Utilization of the JESS (ρJESS = 0.70).

2. Utilization of CPU1 (ρCPU1 = 0.85).

3. Utilization of CPU2 (ρCPU2 = 0.75).

4. Utilization of the PRT (ρPRT = 0.80).

5. Average time spent by a batch program in the MVS computer system (W = 2400
seconds).

6. Average number of batch programs in the MVS computer system (L = 15).

6.2.1 MVS model definition

The model definition for the MVS under the CM is given in Table 6.3. A discussion

of the derivation of the model is warranted. In defining the model, we attempt to portray

a modeler whose expertise is in the application domain and not in any particular area of

modeling or analysis or computer science (more about this later). The idea is to describe

the system in a “natural” way, i.e. in a way that is as close as possible to the model of the
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Table 6.3: CM Object Definition for MVS Model.

Object Attribute Type Range
MVS system time temporal transitional indicative nonneg real

num served status transitional indicative 0..18000
max served permanent indicative 18000

User type permanent indicative (m300,m1200,m2400,l9600)
arrival temporal transitional indicative nonneg real
arrival mean permanent indicative (266.67,640,1600,3200)

Job enter time permanent indicative nonneg real
Jess end service temporal transitional indicative nonneg real

status status transitional indicative (busy,idle)
service mean permanent indicative 112
cpu1 prob permanent indicative 0.6

Cpu1 end service temporal transitional indicative nonneg real
status status transitional indicative (busy,idle)
service mean permanent indicative 226.67
prt prob permanent indicative 0.8

Cpu2 end service temporal transitional indicative nonneg real
status status transitional indicative (busy,idle)
service mean permanent indicative 300
prt prob permanent indicative 0.8

Prt end service temporal transitional indicative nonneg real
status status transitional indicative (busy,idle)

Set Type Member Type Description
JessQ d-set Job objects provide FIFO queue capabilities
Cpu1Q d-set Job objects provide FIFO queue capabilities
Cpu2Q d-set Job objects provide FIFO queue capabilities
PrtQ d-set Job objects provide FIFO queue capabilities
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system that tends to naturally exist in the mind of the modeler. Where useful for clarity,

the convention is adopted to set object names in typewriter font and attribute names in

italics.

6.2.1.1 Objects

The first object is mandated by the methodology: the top-level object. We give it a

name, MVS and associate the model indexing attribute with it. Attributes for number served

and maximum number served are also defined.

Next, four user objects are described – one for each of the possible sources of jobs.

This can be effected two ways in the methodology: by defining four separate objects, e.g.

m300User, m1200User, etc., or by defining a single object, User, which has attributes

indicating its type, arrival mean and time of next arrival. In this manner, the instantiation,

as handled by the specification language, must assign the correct attribute values. These

two approaches yield externally equivalent models (see Chapter 5). The latter approach is

adopted here.

Since the user object is viewed as creating jobs which enter the system,1 an object Job is

defined and given an attribute enter time (to represent the time in which the job entered the

system). Realizing that a job, once created, will be sent to the JESS, the need is recognized

for an object representing the JESS.

The object Jess is defined to have attributes representing its service mean and the time

at which the next end-of-service occurs. Also defined are an attribute indicating its status

and an attribute giving the probability with which a job leaving the JESS will travel to

CPU1. This leads naturally to the definition of the object Cpu1 and subsequently Cpu2

and then Prt. However, at this point a recognition may be made that jobs routed to these

“facilities” may need to be stored (in first-come-first-served order) for processing.

We elect to make use of the CM provisions for sets to represent the queues for each of

the facilities. The sets are typed as d-sets, since set membership must be determined during

execution. The members are identified as being job objects. The CM doesn’t describe set

1Note, the derivation of the user and job objects to some extent hinges upon the modeler’s perception
of model dynamics. Specifically, the user is envisioned as creating jobs, according to a particular rate,
that are sent to the JESS. This illustrates that model definition and model specification are not completely
independent processes, even though they produce artifacts that may be considered independent.
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implementation, i.e. no “default” attributes or operations are defined. The set is described

as providing “FIFO queue capabilities.” At this point in the model definition process, it

may be sufficient to assume the attributes and operations are available to determine queue

size, provide insertion and deletion, and so on.

An interesting observation is that the CM, unlike some simulation programming lan-

guages, e.g. SIMSCRIPT, doesn’t provide “ownership” among objects. That is, in a SIM-

SCRIPT description, the Cpu object might be declared as owning a queue (or FIFO set).

Access would be provided in a manner such as:

remove first Job from queue(Cpu)

as long as the context provides the identification of the Cpu. Under the CM (assuming use

of the CS) the CPUs and queues, in a manner similar to the previously described definition

of the user object, could be defined and specified three ways:

1. As independent objects, Cpu1, Cpu2, Cpu1Q, Cpu2Q.

2. As a single object with an a priori determined number of “instances,” e.g. Cpu[1..2],
CpuQ[1..2].

3. As a single object with an undetermined number of possible “instances.”

Methods (1) and (2) provide a convenient means by which to exploit the relationship be-

tween a cpu and its queue. Method (3) provides the requisite information, but the access

mechanism may be somewhat clumsy. In this case, each object requires an attribute (e.g.

id) to uniquely identify it within the set. And the condition that gives the begin service for

a cpu must be expressed in terms such as:

not empty(CpuQ) and (Cpu.status = idle) and (Cpu.id = CpuQ.id)

Suitable, perhaps, to express behavior at a low level, but higher-level representations must

permit more elegant descriptions.

6.2.1.2 Activity sequences

Since the definition provided by the CM is object-based it might lead naturally, for a

given modeler, to an object-based (process) visualization of model behavior. In this context,

the model is viewed very broadly as follows.
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1. Schedule the “arrival” of the next job.

2. Wait for arrival time.

3. Create Job and record enter time.

4. Place Job in JessQ.

5. Return to 1.

Figure 6.2: Activity Sequence for User.

1. Whenever the JessQ is not empty and status of Jess is idle:

2. Remove first Job in JessQ.

3. Set status to busy.

4. Wait for end-of-service.

5. Determine route for Job.
6. If route is to Cpu1, put Job in Cpu1Q.

7. Else put job in Cpu2Q.

8. Set status to idle.

9. Return to 1.

Figure 6.3: Activity Sequence for Jess.

Four user objects are instantiated (one for each type: m300, m1200, m2400 and l9600).

The appropriate arrival mean is assigned, and the user proceeds according to the activity

sequence given in Figure 6.2. The behaviors of the JESS, the CPUs and the printer are

given in Figures 6.3, 6.4 and 6.5 respectively.

Notice that, in this model, the job is depicted as having no “active” lifetime. Another,

equally valid, model of this system could describe the job as an active object. Such an

approach might define the lifetime of a job as given in Figure 6.6. Either definition may

conform to a given modeler’s “natural” view of the underlying system. The key methodolog-

ical issue is the permission of either description in an unconstrained fashion. The Conical

Methodology provides this.
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1. Whenever the Cpu queue is not empty and status of Cpu is idle:

2. Remove first Job in Cpu queue.

3. Set status to busy.
4. Wait for end-of-service.

5. Determine route for job.

6. If route is to Prt, put job in PrtQ.

7. Else calculate total time in system for job.

8. Set status to idle.
9. Return to 1.

Figure 6.4: Activity Sequence for Cpu.

1. Whenever the PrtQ is not empty and status of Prt is idle:

2. Remove first Job in PrtQ.

3. Set status to busy.

4. Wait for end-of-service.
5. Calculate total time in system for Job.

6. Delete Job.

7. Set status to idle.

8. Return to 1.

Figure 6.5: Activity Sequence for Printer.
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1. Enter system.

2. Wait for Jess.
3. Use Jess.

4. Determine route from Jess.

5. If route is to Cpu1:

6. Wait until Cpu1 is available.

7. Use Cpu1.

8. Determine route from Cpu1.
9. Else:

10. Wait until Cpu2 is available.

11. Use Cpu2.

12. Determine route from Cpu2.

13. If route is to Prt:
14. Wait until Prt is available.

15 Use Prt.

16. Record total time in system.

17. Exit system.

Figure 6.6: Alternate Approach: Activity Sequence for Job.
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6.2.1.3 Flexibility in model representation

Of course, in the MVS model the need for all the objects defined in Table 6.3 is ques-

tionable. In fact, someone knowledgeable in queueing theory, or an SPL such as GPSS,

could construct a program for this system with fewer objects and very few lines of code.

This program would doubtless be totally comprehensible to the modeler, and could in all

likelihood be explained to a decision maker, who may be a novice to many of these concepts.

However, the model is constructed in this fashion to make an important point:

An evolving tenet of modeling methodology is that as systems being modeled grow
more and more complex, the need will become ever greater to allow people with
the domain knowledge to create the models.

The reasoning behind this position is as follows. The current paradigm requires that a do-

main expert “communicate,” often in an unstructured and ad hoc fashion, with a modeling

expert, or expert tool user. For complex systems this leads to many levels of uncertainty.

The modeler is never quite sure that he understands the domain and likewise the domain

expert seldom has 100 percent faith in the produced model. This approach requires the

extensive use of prototype models, which are successively refined in an attempt to remove

these “gray areas.” However, this may not always be the most cost-effective means of pro-

ducing a model. The modeling effort typically does not cease with the first “production”

form. Many models represent a large investment, and therefore have lengthy lifetimes, dur-

ing which the model evolves considerably. Keeping a modeling consultant on contract for

this potentially lengthy period is a costly proposition. Also, the potential exists that the

original modeler may no longer be available subsequent to the original development; thus

model maintenance means re-communicating the domain knowledge to a new modeler.

Hence, a belief is evolving that the methodology and environment should permit the

domain expert to describe the model and, to as great an extent as possible, do so in his or

her own terms. This seems the best way to foster the development of a correct model – a

critical factor to the provision of decision support (see Chapter 3).

In summary, the modeling methodology must be flexible. It should provide the guidelines

and constraints that foster time-proven techniques that encompass good modeling practice.

But the flexibility must remain with the modeler to allow the description of novel systems.

The CM achieves this very well.
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6.2.1.4 Support for statistics gathering

The description of behavior given in the model lifetimes does not include the computa-

tions required to gather statistics, nor are all the necessary attributes defined to accomplish

it. The question is, should they be? Consider these facts:

1. The CM stipulates that the objectives (in terms of the performance measures) be
explicitly stated.

2. Existing SPLs like GPSS and SIMSCRIPT provide a great deal of statistical infor-
mation “automatically,” without requiring anything on the part of the programmer,
except to ask for the information collected.

If the objectives are stated in terms of CM-defined objects and attributes then the statistical

calculations, since these are mathematically well-defined, need not be required from the

modeler when describing a model or its behavior.2

These issues primarily impact the representational forms. Note, however, that if this

approach is adopted for the MVS model, the attribute enter time for the object Job would

not need to be defined. Simply stating the objective of calculating the mean time in the

system for jobs would be sufficient. This leads to the production of an object seemingly

having no attributes. Can the object be deleted? The methodology indicates yes, since an

object is only defined in terms of its attributes (and their values). But, the object does in

fact have attributes. The attributes are those required to facilitate statistics gathering and

reporting, based on the stated model objectives, and one of these attributes must represent

the time at which the object entered the system. These attributes could, in fact, be seen in

some augmented object definition.

As illustrated previously with its handling of sets, the CM does not advocate any partic-

ular implementation of concepts. As long as the “things” being described have a well-defined

meaning (and this can perhaps only be determined in the context of the representational

forms and supporting environment), the CM should, and does, permit flexibility. Descrip-

tions of model behavior should be permitted without stipulating, for instance, the imple-

mentation of set mechanisms. Similarly, it should be permissible to define an object and

2For analytical purposes, a representation that explicitly captures these definitions and computations
may be desirable. But this can be automatically generated from the underlying model specification and the
properly formulated description of model objectives.
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not define explicitly any attributes for it – if the only interest in the object is a set of statis-

tical observations regarding its behavior and no other attributes are needed to realize the

behavior. The realization of statistical behavior could perhaps be determined by examining

an augmented object definition and specification. If the object has no attributes in the

augmented definition, then the object has no function in the model. Therefore, we adopt

the view that the situation described above is acceptable, especially in light of the alterna-

tive: forcing the modeler to explicitly define and specify statistics gathering for every model

developed. Since these things can be automated, in accordance with the automation-based

paradigm that influences the CM, they should be automated.

6.2.2 MVS model specification

In this section, the Condition Specification is examined with regard to the MVS model

defined in the previous section. The MVS transition specification resulting from this devel-

opment is given in Appendix D.

6.2.2.1 Specification of sets in the CS

Through its provisions for set definition, the Conical Methodology provides a convenient

means by which to utilize a common mechanism in simulation: the queue. A queue may

be viewed as a set with some ordering properties that dictate the set insertion and deletion

operations. The Condition Specification does not explicitly support the concept of sets.

Sets used within the CM definition, however, can be described using the extant CS syntax.

However, the encumbrance to the description is significant. An object that may belong to

an ordered set (or queue), as in the case of the job object from the MVS example, must

be given attributes that describe both its location and the time it entered that location.

Selection of the first object in the queue could be accomplished by quantification over all

existing jobs with a given location, e.g. “in waiting queue for Jess,” and selecting the one

with the smallest enter time. Since the CS is not envisioned as a modeler-level language,

this places no undue inconvenience on the modeler in terms of the description of model

behavior. The CS representations are envisaged as being automatically generated from

higher forms. However, a couple of observations can be made at this point:
1. A high-level representation will likely provide convenient mechanism for appealing to

sets (and queues).
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Table 6.4: Set Operations for the Extended Condition Specification. Operations may be
qualified with well-formed expressions of model attributes as well as keywords such as first,

last, all, and unique.

Name Call Returns Description
Insert insert(object, set <, qualifier >) – Insert object into set.
Remove remove(set <, qualifier >) Object Remove object from

set.
Empty empty(set) Boolean True if set has no

members.
Member member(object, set) Boolean True if object in set.
Find find(set, qualifier) Set, Object Find object or subset

based on qualifier.

2. As noted previously, interesting model-based questions exist that cannot be answered
automatically. For these instances, the CS may need to be viewed by an analyst.

These observations beg the question, should the concept of sets, and operations on sets,

as provided by the CM, be added to the CS? If so, can sets be added without hampering

the analytic capabilities of the CS? Another interesting question involves the specification

of sets versus their implementation: can a model translator determine efficient mechanisms

for implementing sets according to their usage? For example, a queue may be used at

the highest levels of description when a counter or other simple variable is sufficient at

the execution level. A modeler may choose to represent a set of failed machines (in the

machine interference problem described subsequently) and choose a machine for repair by

finding the first failed from that set. This could be implemented by two attributes status

and time-of-failure, and avoid the overhead associated with an actual implementation of a

set. Capabilities such as these must be defined to permit truly implementation-independent

model development, but these types of problems are essentially the same as those that have

confronted optimized compilation for years.

The general capabilities for defining and using sets are recommended for the Condition

Specification. The syntax for the set operations, insert, remove, empty, member and

find is given in Table 6.4.3

3Note that specialized queue operations, e.g. enqueue and dequeue, could be defined based on the
general operations insert and remove.

121



CHAPTER 6. MODEL REPRESENTATION

6.2.2.2 Object typing

A modeling approach may permit typing of objects. SIMSCRIPT provides a mechanism

through which entities may be classified as permanent or temporary. In GPSS, objects are

viewed as dynamic (transactions) or static (facilities). In the parlance of the CS, designating

an object as temporary or permanent could be used to indicate whether or not a destroy

operation is permissible on the object. Designating an object as dynamic or static could

provide an indication of its proper use with regard to model sets, i.e. an enqueue operation

should perhaps be illegal on a static object.

However, since the CM stipulates that attributes, not objects, are typed, no mechanism

for object typing is described for the CS.

6.2.2.3 Parameterization of alarms

Overstreet provides the facility to parameterize alarms. Alarm parameterization would

seem unnecessary and unadvised for the following reason: use of parameters permits the

separation of the object from the alarm by using a single alarm for many objects. For ex-

ample, when alarm(failure,i). This seems bad conceptually, and in a software engineering

sense, increases the coupling of the specification. A better specification for this would be,

for some i:1..N:: when alarm(machine[i].failure).

In the former case, the use of alarm parameters may indicate a poorly designed model.

Model analysis should perhaps be defined to detect this type of situation. However, alarm

parameters are useful not only to identify the object to which the alarm belongs, but also

in a general sense to allow an expression in terms of model attributes to be evaluated when

the alarm is set, and then used when the alarm goes off. To disallow this facility may

cause a modeler to resort to the creation of extra, artificial, attributes, to store values

for this same purpose. For this reason, the parameterization of alarms remains a part of

the representation provided in the Condition Specification. Nontheless, how this facility

manifests itself in the higher-level representational forms is unclear.

6.2.2.4 On the relationship of action clusters and events

Consider the situation described in Figure 6.7. The illustration represents, essentially, an

“event” description of an end-of-service at the JESS. Certainly, a high-level representation
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Whenever Jess.end service

Jess.status := idle

Job := REMOVE(JessQ)

if (random() < Jess.cpu1 prob)

INSERT(Job,Cpu1Q)
else

INSERT(Job,Cpu2Q)

Figure 6.7: Event Description for JESS End-of-Service.

would permit the model to be described in similar terms. The question is: how is this

represented in the CS, where each action must be under the domain of a single, explicitly

defined condition? One possible solution is illustrated in Figure 6.8. In this case, the event

is decomposed into the three action clusters pictured. The condition for the first AC is

the condition on the occurrence of the event. The two remaining conditions represent the

conjunction of the event condition with a condition relating to the value of the random

variate.4 This process requires the creation of two Boolean variables. Within the CM, these

may be defined as attributes of the top-level model object. However, the model, as defined

by the modeler, will not have these attributes defined – since the specification mechanism

will be at a much higher level than the CS. We observe,

these are attributes needed to implement the higher-level representation using
the CS syntax.

This type of phenomenon may commonly occur throughout the hierarchy. Management of

these additional attributes is an issue of concern for a modeling methodology and environ-

ment supporting model evolution through transformations. However, the interest of this

research effort, with respect to the CS, is primarily at the action cluster level; the man-

agement problem for these variables isn’t addressed further. However, this type of problem

has been addressed within the development of compiler theory. Appeal to these results is

4As shown in Chapter 8, this type of augmentation is required only when each AC must be considered
independently. The knowledge that the event (when alarm) condition must always be accompanied by one
of the two remaining ACs, as can be depicted in the ACIG, permits the simplification of the AC conditions
and obviates the need for “dummy” variables.
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WHEN ALARM(Jess.end service):

Boolean1 := true

Boolean2 := random() < Jess.cpu1 prob

Boolean1 AND Boolean2:
Jess.status := idle

Job := REMOVE(JessQ)

INSERT(Job,Cpu1Q)

Boolean1 := false

Boolean1 AND NOT Boolean2:

Jess.status := idle

Job := REMOVE(JessQ)

INSERT(Job,Cpu2Q)

Boolean1 := false

Figure 6.8: Action Clusters Corresponding to Event Description for JESS End-of-Service.

made to resolve any variable management issues not detailed specifically herein. For the

context of this effort, the convention for naming these attributes follows the form, B$1, B$2,

etc. These are considered attributes of the top-level object, but are not listed in the object

definition.

6.2.2.5 The report specification

Overstreet does not prescribe a specific form for the report specification, but instead

indicates how the interface between the report specification and the transition specification

might be formed using a program designed to compute statistics (see Figure 5.4). An

alternative form for the report specification is proposed. The specification is comprised of

statements taking the form:

report expression as “title”

The expression may be given in terms of model objects and attributes and common, well-

defined statistical measurements (so that the calculations needed to gather statistics can

be automatically generated from the information provided in the object definitions and
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REPORT TIME IN STATE Jess.status = busy OVER STEADY STATE DURATION AS “Utilization of Jess”

REPORT TIME IN STATE Cpu1.status = busy OVER STEADY STATE DURATION AS “Utilization of Cpu1”

REPORT TIME IN STATE Cpu2.status = busy OVER STEADY STATE DURATION AS “Utilization of Cpu2”

REPORT TIME IN STATE Prt.status = busy OVER STEADY STATE DURATION AS “Utilization of Prt”

REPORT MEAN TIME IN SYSTEM FOR OBJECT Job AS “Average time of job in system”
REPORT TIME WEIGHTED MEAN NUMBER IN SYSTEM FOR OBJECT Job AS “Average number of jobs in system”

Figure 6.9: MVS Report Specification.

transition specification). The report specification for the MVS model is given in Figure 6.9.

6.2.2.6 On automating statistics gathering

When seeking to automatically generate the attributes and actions necessary to ac-

complish the statistics gathering specified by the report specification, the problem may be

addressed in two ways:

1. Generate the necessary attributes and actions to collect and calculate the statistical
information as the simulation is running.

2. Generate the necessary actions to write the appropriate value changes to “logs” which
can be post-processed to gather the requisite statistical information.

The first approach is adopted by many extant SPLs. The second method is often utilized in

distributed and parallel discrete event simulation to prevent the statistical gathering rou-

tines from becoming either a source of nondeterminism or a performance bottleneck. The

appropriateness of either approach depends upon the characteristics of the target imple-

mentation as well as the language in which the executable model is represented.

Clearly, both approaches are automatable. The later approach is the simplest, requiring

only that a set of output actions be added as appropriate within a transition specification,

and that a post-processor be provided to generate the statistical values from the logs. The

feasibility of the former approach merits further discussion. We consider the approach in

terms of augmenting an existing object and transition specification.
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Augmented object specification. To produce an augmented object specification that

facilitates “on-the-fly” statistics gathering, some mechanism must automatically generate

attributes to accomplish the tasks specified by the report specification. This augment-

ing mechanism requires some well-defined naming scheme to provide general assurance

against creating any compilation problems by having conflicts arise between the “baseline”

(modeler-generated) and augmented attribute naming. As before, the details of this ap-

proach are beyond the scope of this work, but for purposes of this example we use the

following scheme.5 For a report specification containing,

report time in state object.attrib = value over steady state duration as “...”

we define the following attributes:

• timeInState$attribValue for the object. This attribute contains the accumulated sim-
ulation time in steady state (if defined) for which the attribute has the corresponding
value.

• timeInState$attribValueStart for the object. This attribute contains the simulation
time at which the object last assumed the value.

For a report specification containing,

report mean time in system for object object as “...”

we define the following attributes:

• enterTime$system (or enterTime$setname) for the object. This attribute contains the
entry time for the object instance into the system (or set).

• timeInSys$object for the system object (or timeInSetname for a set). This attribute
contains the accumulated time in steady state (if defined) for all the instances of the
given class of object in the system (or set). (The time is given by the difference
between object creation and destruction – for the system, or by insert and remove
operations – for a set.)

For a report specification containing,

report time weighted mean number in system for object object as “...”

we define the following attributes:

5Assume that the dollar symbol ($) is not permitted in modeler-level attribute naming. Attributes
containing the $ are recognized as being system generated.
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Figure 6.10: Calculating a Time-Weighted Average for Number in System. Average
number in system is given by the total area divided by the duration time of the simulation.

• numInSys$object for the system object (or numInSetname for a set). This attribute
contains the current number of object instances of the given class inside the system
(or set).

• numInSysTime$object for the system object (or numInSetnameTime for a set). This
attribute contains the simulation time at which the number of object instances of the
given class inside the system (or set) was last set.

• numInSysArea$object for the system object (or numInSetnameArea for a set). This
attribute contains the accumulated area in steady state (if defined) of object instances
of the given class inside the system (or set). This concept is illustrated in Figure 6.10.

The following are candidate system-generated attributes (belonging to the system object –

a $ symbol could be added for consistency):

• systemTime. Contains the current value of simulation time.

• steadyState. A Boolean indicating whether or not steady state has been reached for
a given model execution.

• steadyStateStartTime. Contains the value of simulation time when system steady
state was achieved.

A comprehensive set of statistical reporting attributes (and computations) has not been

defined here. A wide variety of statistical functionality can be automatically supported
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similar to that provided by most simulation programming languages. This presentation

is simply intended to give the flavor of how attribute monitoring in an augmented object

specification may be defined.

Augmented transition specification. In order to provide monitoring of “baseline” at-

tributes, the system must generate a description of the assignments to augmented attributes

that accompany any change in value of a monitored baseline attribute. For example, given

a report specification containing,

report time in state obj.attrib = value over steady state duration as “...”

we define the following calculations:

Baseline Action Augmented Actions
obj.attrib := value obj.attrib := value

obj.timeInState$attribValueStart := systemTime
obj.attrib := value′ if ((obj.attrib = value) and (steadyState))

obj.timeInState$attribValue := obj.timeInState$attribValue +
(systemTime - obj.timeInState$attribValueStart)

obj.attrib := value′

For a report specification containing,

report mean time in system for object obj as “...”

we define the following calculations:

Baseline Action Augmented Actions
create(obj) create(obj)

obj.enterTime$system := systemTime
destroy(obj) if (steadyState)

sysobj.timeInSys$obj := sysobj.timeInSys$obj +
(systemTime - obj.enterTime$system)

destroy(obj)

For a report specification containing,

report time weighted mean number in system for object obj as “...”

we define the following calculations:
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Baseline Action Augmented Actions
create(obj) create(obj)

if (steadyState)
sysobj.numInSysArea$obj := sysobj.numInSysArea$obj +
sysobj.numInSys$obj * (systemTime - sysobj.numInSysTime$obj)

sysobj.numInSys$obj := sysobj.numInSys$obj + 1
sysobj.numInSysTime$obj := systemTime

destroy(obj) if (steadyState)
sysobj.numInSysArea$obj := sysobj.numInSysArea$obj +
sysobj.numInSys$obj * (systemTime - sysobj.numInSysTime$obj)

sysobj.numInSys$obj := sysobj.numInSys$obj - 1
sysobj.numInSysTime$obj := systemTime
destroy(obj)

Can augmented calculations be added as ACs? The most direct approach to aug-

menting a CS would be to adopt a stratified approach in which any additional calculations

generated to facilitate statistics gathering are incorporated within the existing CAP/AC

paradigm underlying the CS. But, whenever a monitored attribute is referenced in the

baseline specification, the attendant statistical calculations need to be atomic with the

reference. Consider the following fragment from the MVS example,

{ Jess Begin Service }
Jess.status = idle and not empty(JessQ):

Jess.status := busy
set alarm(Jess.end service, exp(Jess.service mean))

{ Jess End Service Route Cpu1 }
B$1 and B$2:

Jess.status := idle
Job := remove(JessQ)
insert(Job,Cpu1Q)
B$1 := false

At end service the total busy time is accumulated, using the calculation:

jess.timeInState$statusBusy := jess.timeInState$statusBusy +
(systemTime - jess.timeInState$statusBusyStart)

If this action is incorporated into a state-based successor of the end service AC, the possi-

bility for race conditions will have been introduced between the new statistical AC – which

reads the value of jess.timeInState$statusBusyStart, and the begin service AC – which sets

the value of jess.timeInState$statusBusyStart. In order to prevent race conditions, the
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condition for begin service might have to be conjoined with a condition indicating the com-

pletion of the new statistical AC. This approach could quickly become unattractive. An

alternative approach would be to relax the CAP/AC paradigm in the augmented specifi-

cation, permitting the conditions on statistics gathering to appear as sub-conditions in an

AC. In light of these two alternatives, the method of statistics gathering through logs seems

superior in this context.

6.2.2.7 The experiment specification

To facilitate the experimentation process, the following information must typically be

provided by a modeler:

1. Condition for start of model’s steady state.

2. Random number seeds.

3. Number of replications to perform.

4. Name(s) of input/output files.

Many other details may also be provided. For example, the choice of architecture may be

specified (or perhaps a best choice can be provided by the model analyzer – given some

global objective like “find most efficient implementation”).

To the extent that the information involved in model experimentation can be utilized

for analysis, it may be desirable to capture it at the CS level. We propose an experiment

specification for the CS, but do not prescribe its form.

6.3 Example: Traffic Intersection

A simulation model of the traffic intersection (TI) at Prices Fork Road and West Campus

Drive in Blacksburg, Virginia may adopt the structure illustrated in Figure 6.11. A single

traffic light with north, south, east and west directions controls vehicular movement within

each of the nine lanes of the intersection. The intersection itself is conceptually divided

into twenty-five blocks through which vehicles travel; while the location of a vehicle moving

through the actual intersection is a continuous function, the blocks provide a convenient

means of approximating a traffic flow pattern (with reasonable fidelity) within a discrete

event simulation of the system.
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Figure 6.11: The Intersection of Prices Fork Road and West Campus Drive.
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Table 6.5: Traffic Intersection Interarrival Times.

Lane Interarrival Distribution Mean
1 Exponential 20.61 Seconds
2 Unknown 8.52 Seconds
3 Unknown 6.21 Seconds
6 Unknown 8.53 Seconds
7 Unknown 5.52 Seconds
8 Unknown 3.77 Seconds
9 Unknown 5.63 Seconds

The objective of the simulation is to provide a light timing sequence which improves the

throughput for the intersection. The following definitions are used to describe the model,

1. N = number of lanes in the intersection.

2. m = number of vehicles departing from lane j : j = 1, 2, . . . , N

3. Arrival Time = the time at which a vehicle joins the end of the waiting line or the
time at which the front end of the vehicle moves across the first white line in the lane
(if no waiting line exists).

4. Departure Time = the time at which the rear end of the vehicle clears the last white
line in the travel path.

5. IATij = interarrival time of the ith (i = 1, 2, . . . , m) vehicle in lane j : j = 1, 2, . . . , N .

6. Vehicle Waiting Time = departure time - arrival time

7. Wij = waiting time of the ith vehicle in lane j (i = 1, 2, . . . , m; j = 1, 2, . . . , N).

8. WTj = waiting time of all vehicles in lane j : j = 1, 2, . . . , N = 1
m

∑m
i=1 Wij

9. E(Wj) = expected waiting time of vehicles in lane j : j = 1, 2, . . . , N = 1
m

∑m
i=1 Wij =

1
mWTj

Vehicle interarrival times and travel times are presented in Tables 6.5 and 6.6.6 During

the observation period, traffic flow in the north-south, north-east, and north-west directions

was negligible. Therefore the model contains no information about traffic from lanes 4 and

5. Also, the effects of pedestrian traffic (as provided by a pedestrian light control) within the

intersection are not present in the model. According to the observed system, the probability

6The values presented are based on observations of the system taken during “rush hour” conditions in
May 1987 by the CS 4150 simulation class at Virginia Tech.
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Table 6.6: Traffic Intersection Travel Times.

Lane Travel Time Distribution Mean
1 Uniform 4.87 Seconds
2 Uniform 2.70 Seconds
3 Uniform 1.85 Seconds
6 Uniform 2.67 Seconds
7 Uniform 4.30 Seconds

7(r) Uniform 2.43 Seconds
8 Uniform 4.32 Seconds

9(l) Uniform 4.75 Seconds
9(r) Uniform 1.84 Seconds

of a right turn by a vehicle traveling in lane 7 is 0.524 and the probability of a right turn

from lane 9 is 0.494. The model allows right turn on red for these lanes.

The light timing sequence is illustrated in Figure 6.12. The light follows a cycle of 40

seconds of green for south-north traffic (while other directions in red), followed by 3 seconds

where all directions are under red (for intersection clearance), followed by a 62 second green

period for east-west traffic. During this 62 second span, south-north lanes are under red for

the entire time, while west-east lanes get a green after 22 seconds.

6.3.1 TI model definition

The CM model definition for the TI is prefaced with some remarks regarding system

behavior.

6.3.1.1 Vehicular behavior

Traffic through the intersection is governed by the following assumptions. A vehicle

arrives at the intersection and waits until it reaches the head of the line. In general, if the

light is green and the block immediately ahead in the path of the vehicle is available, the

vehicle moves into that block and travels a time proportional to the total travel time for

a vehicle in the given lane. Provisions are made to ensure that the first vehicle entering

the intersection on a new green waits until the intersection has cleared before proceeding.

Subsequent vehicles entering the intersection during the same green do not check this clear-

ance. Only vehicles making specified right turns may proceed under red, i.e. all vehicles in
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Figure 6.12: Light Timing Sequence Diagram.

the model follow the established rules of the road.

Figure 6.13 illustrates the movement of a vehicle in lane 1. A vehicle traveling through

the intersection in lane 1 does so by moving through blocks X,U,M,L, and C in that order.

The first vehicle entering the intersection through lane 1 after a new east-west green must

wait for the intersection to clear from the previous green (which was for the south-north

traffic in lanes 8 and 9). This means determining that blocks I, J, K, L, M, N, T, and U

are clear. Note that the clearance of blocks Q, R and S should not be part of this criterion

since these are the blocks involved in a right turn from lane 9 which is permitted under

south-north red. The blocks Q, R and S can safely be ignored by the clearance check for

lane 1 due to the 3 second delay in which all lanes are under red following the south-north

green.7

Each vehicle traveling through lane 1, however, must check clearance for blocks A, B,

7This is true since the travel time for vehicles going south-to-west in lane 9 through blocks Q, R and S
is 2.23 seconds. Further, if the intersection is full when the south-north green ends, traffic backup cannot
cause the delay to exceed the 2.23 seconds to clear blocks Q,R and S for the last vehicle through.
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Figure 6.13: Traffic Flow Diagram for Lane 1 with Clearance Lanes Indicated.

D, E, L, and M before proceeding from block U to block M since traffic may be flowing

simultaneously in lanes 6 and 7. In order to prevent vehicles in lane 7 that are turning

right under a red light from blocking lane 1 traffic, a vehicle in lane 7 turning right on red

during a green light for east-west traffic (lanes 1,2,3), may only enter block A if block U is

unoccupied.8 Traffic Flow Diagrams for the remaining lanes are given in Figures 6.14 and

6.15.

6.3.1.2 Objects

The CM object definitions for the TI model are given in Tables 6.7 through 6.12. The

first object defined is for the traffic signal. The light is given attributes indicating the

status of each of its signals, sn, ew, we, which assume the value green or red and thereby

dictate traffic flow through the intersection. The hold times for each of the states as well as

8The logic defined for this model may produce a somewhat crude approximation of the behavior of the
actual system. Particularly since driver behavior, erratic and difficult to predict in the actual system, is
idealized in the model. We assume, for purposes of this example however, that this approximation is within
the tolerance levels prescribed for the simulation study.
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Figure 6.14: Traffic Flow Diagrams for Lanes 2, 3, 6 and 7S with Clearance Lanes Indicated.
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Table 6.7: CM Object Definition for Top-Level Object and Traffic Signal

Object Attribute Type Range
ti numCars status transitional indicative nonneg int

maxCars permanent indicative 18600
light sn status transitional indicative (green,red)

ew status transitional indicative (green,red)
we status transitional indicative (green,red)
snGreen temporal transitional indicative nonneg real
snRed temporal transitional indicative nonneg real
ewGreen temporal transitional indicative nonneg real
weGreen temporal transitional indicative nonneg real
snGreenTime permanent indicative 40.00 seconds
snClearTime permanent indicative 3.00 seconds
ewGreenTime permanent indicative 22.00 seconds
weGreenTime permanent indicative 40.00 seconds

Table 6.8: CM Object Definition for Lanes

Object Attribute Type Range
lane[1..9] arrival temporal transitional indicative nonneg real

arrival mean permanent indicative positive real
probTurn permanent indicative positive real
newGreen status transitional indicative (true,false)

the time at which the next state change will occur are also provided as attributes for the

light.

An object for each lane is defined as shown in Table 6.8. Within the CM, when the

number of object instances is a priori determinable, an object may be defined using “array

notation” to indicate that number. In this case, light[1..9] is used for notational conve-

nience. Of course, since lanes 4 and 5 are not represented in the model, the definition could

be, lane[i: i=1,2,3,6,7,8,9]. The details of the definitional syntax are not elements

of the methodology crucial within the scope of this effort. Of primary concern is that the

“meaning” of a given definition or specification be unambiguously conveyed.

We represent the topology of the intersection by creating an object, block for each of the

twenty-five blocks pictured in Figure 6.11. Each block has an attribute, status, indicating

by busy or idle, whether or not the block is occupied by a vehicle.
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Table 6.9: CM Object Definition for Blocks.

Object Attribute Type Range
block[A..Y] status status transitional indicative (busy,idle)

Table 6.10: CM Object Definition for Lane Waiting Lines.

Set Type Member Type Description
laneQ[1..9] d-set LanexCar objects provide FIFO queue capabilities

Since cars arrive at the intersection and potentially are made to join a waiting line

prior to actually entering the intersection proper, we appeal to the CM provisions for set

definition (as in the previous example) to provide a queue for each lane.

Finally, objects representing vehicular traffic are defined. We define one object “class”

for each of the paths through the intersection, i.e. an object for vehicles in lane 1, one for

vehicles in lane 2, one for vehicles in lane 7 turning right, etc. Each object has attributes

that dictate its path through the intersection proper and holding times for each of the blocks

in the path.

6.3.2 TI model specification

Since, in the actual system, the vehicles provide the activity of interest, a natural means

of describing model dynamics is to depict the lifetimes of vehicles traveling in the various

lanes. These lifetimes are depicted in the activity sequences of Figures 6.16 through 6.24.

The “implementations” of these lifetimes in the CS are given in the transition specification

for the TI model in Appendix E. The report specification is presented in Figure 6.25.

6.3.2.1 Using functions in the Condition Specification

Overstreet identifies a function specification in which a modeler may describe functions.

These functions may be invoked within the transition specification to aid in the description

of model behavior. Overstreet places no restrictions on the use of functions. Given the per-

ceived need to provide flexibility to a modeler, this stance is appropriate. However, since

functions are exempt from the analysis defined by the CS, perhaps their use should be lim-
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Table 6.11: CM Object Definition for Vehicles (Part I).

Object Attribute Type Range
lane1Car getBlockU temporal transitional indicative nonneg real

getBlockM temporal transitional indicative nonneg real
getBlockL temporal transitional indicative nonneg real
getBlockC temporal transitional indicative nonneg real
exit temporal transitional indicative nonneg real
blockXTime permanent indicative 1.12 seconds
blockUTime permanent indicative 1.02 seconds
blockMTime permanent indicative 0.87 seconds
blockLTime permanent indicative 0.61 seconds
blockCTime permanent indicative 1.25 seconds

lane2Car getBlockV temporal transitional indicative nonneg real
getBlockO temporal transitional indicative nonneg real
getBlockG temporal transitional indicative nonneg real
exit temporal transitional indicative nonneg real
blockYTime permanent indicative 0.68 seconds
blockVTime permanent indicative 0.68 seconds
blockOTime permanent indicative 0.67 seconds
blockGTime permanent indicative 0.67 seconds

lane3Car getBlockP temporal transitional indicative nonneg real
getBlockH temporal transitional indicative nonneg real
exit temporal transitional indicative nonneg real
blockWTime permanent indicative 0.63 seconds
blockPTime permanent indicative 0.62 seconds
blockHTime permanent indicative 0.60 seconds

lane6Car getBlockE temporal transitional indicative nonneg real
getBlockM temporal transitional indicative nonneg real
getBlockT temporal transitional indicative nonneg real
exit temporal transitional indicative nonneg real
blockBTime permanent indicative 0.73 seconds
blockETime permanent indicative 0.69 seconds
blockMTime permanent indicative 0.64 seconds
blockTTime permanent indicative 0.61 seconds

lane7SCar getBlockD temporal transitional indicative nonneg real
getBlockL temporal transitional indicative nonneg real
getBlockS temporal transitional indicative nonneg real
exit temporal transitional indicative nonneg real
blockATime permanent indicative 0.52 seconds
blockDTime permanent indicative 0.84 seconds
blockLTime permanent indicative 0.80 seconds
blockSTime permanent indicative 0.78 seconds
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Table 6.12: CM Object Definition for Vehicles (Part II).

Object Attribute Type Range
lane7RCar getBlockD temporal transitional indicative nonneg real

getBlockC temporal transitional indicative nonneg real
exit temporal transitional indicative nonneg real
blockATime permanent indicative 0.46 seconds
blockDTime permanent indicative 0.91 seconds
blockCTime permanent indicative 1.06 seconds

lane8Car getBlockJ temporal transitional indicative nonneg real
getBlockK temporal transitional indicative nonneg real
getBlockL temporal transitional indicative nonneg real
getBlockM temporal transitional indicative nonneg real
getBlockN temporal transitional indicative nonneg real
getBlockG temporal transitional indicative nonneg real
exit temporal transitional indicative nonneg real
blockITime permanent indicative 0.45 seconds
blockJTime permanent indicative 0.86 seconds
blockKTime permanent indicative 0.82 seconds
blockLTime permanent indicative 0.40 seconds
blockMTime permanent indicative 0.39 seconds
blockNTime permanent indicative 0.72 seconds
blockGTime permanent indicative 0.68 seconds

lane9LCar getBlockR temporal transitional indicative nonneg real
getBlockS temporal transitional indicative nonneg real
getBlockT temporal transitional indicative nonneg real
getBlockU temporal transitional indicative nonneg real
getBlockO temporal transitional indicative nonneg real
getBlockH temporal transitional indicative nonneg real
exit temporal transitional indicative nonneg real
blockQTime permanent indicative 0.94 seconds
blockRTime permanent indicative 0.86 seconds
blockSTime permanent indicative 0.43 seconds
blockTTime permanent indicative 0.42 seconds
blockUTime permanent indicative 0.58 seconds
blockOTime permanent indicative 0.76 seconds
blockHTime permanent indicative 0.76 seconds

lane9RCar getBlockR temporal transitional indicative nonneg real
getBlockS temporal transitional indicative nonneg real
exit temporal transitional indicative nonneg real
blockQTime permanent indicative 0.73 seconds
blockRTime permanent indicative 0.74 seconds
blockSTime permanent indicative 0.37 seconds
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1. Enter intersection.

2. Wait until first in line.

3. Wait until light is green.

4. If first through - wait for clearance: Blocks I,J,K,L,M,N,T,U,X.
5. Get Block X.

6. Hold 1.12 seconds.

7. Get Block U.

8. Release Block X.

9. Hold 1.02 seconds.
10. Wait for clearance: Blocks A,B,D,E,L,M.

11. Get Block M.

12. Release Block U.

13. Hold 0.87 seconds.

14. Get Block L.

15. Hold 0.61 seconds.
16. Get Block C.

17. Release Block M.

18. Release Block L.

19. Hold 1.25 seconds.

20. Release Block C.
21. Exit.

Figure 6.16: Activity Sequence for Lane 1 Vehicle.
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1. Enter intersection.

2. Wait until first in line.

3. Wait until light is green.

4. If first through - wait for clearance: Blocks I,J,K,L,M,N,T,U,Y.
5. Get Block Y.

6. Hold 0.68 seconds.

7. Get Block V.

8. Release Block Y.

9. Hold 0.68 seconds.
10. Get Block O.

11. Release Block V.

12. Hold 0.67 seconds.

13. Get Block G.

14. Release Block O.
15. Hold 0.67 seconds.

16. Release Block G.

17. Exit.

Figure 6.17: Activity Sequence for Lane 2 Vehicle.

1. Enter intersection.

2. Wait until first in line.

3. Wait until light is green.
4. If first through - wait for clearance: Blocks O,T,U,W.

5. Get Block W.

6. Hold 0.63 seconds.

7. Get Block P.

8. Release Block W.
9. Hold 0.62 seconds.

10. Get Block H.

11. Release Block P.

12. Hold 0.60 seconds.

13. Release Block H.
14. Exit.

Figure 6.18: Activity Sequence for Lane 3 Vehicle.
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1. Enter intersection.
2. Wait until first in line.

3. Wait until light is green.

4. Get Block B.

5. Hold 0.73 seconds.

6. Get Block E.

7. Release Block B.
8. Hold 0.69 seconds.

9. Get Block M.

10. Release Block E.

11. Hold 0.64 seconds.

12. Get Block T.
13. Release Block M.

14. Hold 0.61 seconds.

15. Release Block T.

16. Exit.

Figure 6.19: Activity Sequence for Lane 6 Vehicle.

1. Enter intersection.

2. Wait until first in line.
3. Wait until light is green.

4. Get Block A.

5. Hold 0.52 seconds.

6. Get Block D.

7. Release Block A.
8. Hold 0.84 seconds.

9. Get Block L.

10. Release Block D.

11. Hold 0.80 seconds.

12. Get Block S.
13. Release Block L.

14. Hold 0.78 seconds.

15. Release Block S.

16. Exit.

Figure 6.20: Activity Sequence for East-Bound Lane 7 Vehicle.
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1. Enter intersection.

2. Wait until first in line.

3. If light is red and east-west is green- wait for clearance: Blocks L,M.

4. Get Block A.

5. Hold 0.46 seconds.
6. Get Block D.

7. Release Block A.

8. Hold 0.91 seconds.

9. Get Block C.

10. Release Block D.
11. Hold 1.06 seconds.

12. Release Block C.

13. Exit.

Figure 6.21: Activity Sequence for South-Bound Lane 7 Vehicle.

ited to non-model-specific activity, such as the generation of random numbers and random

variates? Regardless, functions should have no unanalyzable effects on model attributes. In

the absence of the highest-level representations, however, further guidance on the use of

functions in the CS is impracticable.

6.3.2.2 Another set operation

Developing the transition specification for the TI model identifies the need for another

set operation. Here, the need arises since d-sets are defined (the lane queues) which may

have different “classes” of objects as members. For example, the set laneQ[9] may have

lane9RCar objects and lane9LCar objects. Model behavior varys according to which class

of object is removed. Specifically, a car turning right in lane 9 enters the intersection and

holds block Q for 0.73 seconds, whereas a car turning left holds block Q for 0.94 seconds.

Furthermore, the left-turning car must establish a different set of clearances than the right

turning car. We define the set operator, class, which interrogates an object within a set

and returns the value of its class, i.e. the object name that appears in the CM definition.

The operator must be passed the set name and a pointer to the object. A typical use of
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1. Enter intersection.
2. Wait until first in line.

3. Wait until light is green.

4. If first through - wait for clearance: Blocks B,E,I,L,M,X,U,Y,V,O.

5. Get Block I.

6. Hold 0.45 seconds.
7. Get Block J.

8. Release Block I.

9. Hold 0.86 seconds.

10. Get Block K.

11. Release Block J.

12. Hold 0.82 seconds.
13. Get Block L.

14. Hold 0.40 seconds.

15. Get Block M.

16. Release Block K.

17. Hold 0.39 seconds.
18. Get Block N.

19. Release Block L.

20. Release Block M.

21. Hold 0.72 seconds.

22. Get Block G.

23. Release Block N.
24. Hold 0.68 seconds.

25. Release Block G.

26. Exit.

Figure 6.22: Activity Sequence for Lane 8 Vehicle.
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1. Enter intersection.
2. Wait until first in line.

3. Wait until light is green.

4. If first through - wait for clearance: Blocks B,E,L,M,X,U,Y,V,O,W,P,H.

5. Get Block Q.

6. Hold 0.94 seconds.
7. Get Block R.

8. Release Block Q.

9. Hold 0.86 seconds.

10. Get Block S.

11 Hold 0.43 seconds.

12. Get Block T.
13. Release Block R.

14. Hold 0.42 seconds.

15. Get Block U.

16. Release Block S.

17. Release Block T.
18. Hold 0.58 seconds.

19. Get Block O.

20. Release Block U.

21. Hold 0.76 seconds.

22. Get Block H.

23. Release Block O.
24. Hold 0.76 seconds.

25. Release Block H.

26. Exit.

Figure 6.23: Activity Sequence for West-Bound Lane 9 Vehicle.
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1. Enter intersection.

2. Wait until first in line.
4. If light is red - wait for clearance: Blocks D,L,S,Q.

5. Get Block Q.

6. Hold 0.73 seconds.

7. Get Block R.

8. Release Block Q.
9. Hold 0.74 seconds.

10. Get Block S.

11 Hold 0.37 seconds.

12. Release Block R.

13. Release Block S.
14. Exit.

Figure 6.24: Activity Sequence for East-Bound Lane 9 Vehicle.

REPORT MEAN TIME IN SYSTEM FOR OBJECT Lane1Car AS “Average travel time of vehicles in Lane 1”
REPORT MEAN TIME IN SYSTEM FOR OBJECT Lane2Car AS “Average travel time of vehicles in Lane 2”

REPORT MEAN TIME IN SYSTEM FOR OBJECT Lane3Car AS “Average travel time of vehicles in Lane 3”

REPORT MEAN TIME IN SYSTEM FOR OBJECT Lane6Car AS “Average travel time of vehicles in Lane 6”

REPORT MEAN TIME IN SYSTEM FOR OBJECT Lane7SCar AS “Average travel time of east-bound vehicles in Lane 7”

REPORT MEAN TIME IN SYSTEM FOR OBJECT Lane7RCar AS “Average travel time of south-bound vehicles in Lane 7”
REPORT MEAN TIME IN SYSTEM FOR OBJECT Lane8Car AS “Average travel time of vehicles in Lane 8”

REPORT MEAN TIME IN SYSTEM FOR OBJECT Lane9LCar AS “Average travel time of west-bound vehicles in Lane 9”

REPORT MEAN TIME IN SYSTEM FOR OBJECT Lane9RCar AS “Average travel time of east-bound vehicles in Lane 9”

Figure 6.25: TI Report Specification.
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this operation may be a Boolean test of the form:

class(laneQ[9],first) = Lane9LCar

where the modifier first indicates the object at the head of an ordered set.

6.3.3 Object-based versus object-oriented

This section concludes with some thoughts regarding the CM as an object-based approach

to model development as contrasted with object-oriented approaches.

For purposes of this discussion, the following are considered characteristic of the object-

oriented paradigm (OOP):9

1. Association of objects in a system to objects in a model.

2. Class descriptions.

3. Inheritance structure.

4. Object behavior encapsulated within methods.

5. Object instantiation.

6. Object “communication” through message passing.

A long-running debate in Computer Science raises the question, is object-oriented a superior

approach? Certainly, the OOP has advantages over traditional programming languages from

a general software engineering perspective. Still, overuse of features like multiple inheritance

can lead to code that is nearly impossible to comprehend. Our question has a slightly

different focus: from the point of view of discrete event simulation model development,

is OOP superior to the object-based perspective of the CM? We assert that the answer

to this question is emphatically no. First of all, the CM provides (1), (2), (3) and (5)

from the list above. The CM has no notion of “method” and places no restrictions on the

manner in which objects read and write the values of attributes. These issues fall within

the domain of the model representation form(s). Certainly an SMSDL could encapsulate

model dynamics in such a manner, and enforce “communication” through a message passing

9Many may argue that other features such as polymorphism and operator overloading are also integral
to the OOP. We consider these traits to be more an aspect of object-oriented programming languages than
the OOP itself.
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structure, but at what cost? As argued in the previous section, an important characteristic

of any methodology for simulation model development is providing flexibility to the modeler

– specifically, not forcing a single restrictive conceptual framework on every problem. The

constraints of the object-oriented paradigm can cause a modeler to define a system in a

very unnatural way. Take, for instance, the TI model presented in this section. An OOP

characterization would allow the blocks of the intersection proper to be defined as objects

(just as done with the CM), but a vehicle object is forced to send a message to a block

object to determine the status of the block. Communication among model objects, when it

occurs, should be expressible (at the highest, modeler-end, level) in a natural manner. One

may view a pilot and a co-pilot in an aviation simulation as communicating through passed

messages, but describing driver behavior as passing messages to – and receiving them from

– asphalt, is another matter altogether.

6.4 Example: Colliding Pucks

The Colliding Pucks problem, hereafter referred to as pucks, is based on the pool ball

systems described by Goldberg [89]. In the basic pucks model, rigid disks move along a flat

surface and collide with surface boundaries and other disks. The kinematics of the pucks

system are detailed below.

6.4.1 Kinematics of pucks

A pucks system can be viewed as illustrated in Figure 6.26. A large variety of models

are possible for pucks based on the myriad physical assumptions that can be made about

the system. For this example, the following system characteristics are assumed:

1. The surface is a rectangular table aligned with the x-y origin.

2. The table is frictionless.

3. Table boundaries have infinite mass.

4. All pucks are of equal mass.

5. Collisions are elastic and total system energy is conserved.
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y

x

Figure 6.26: Colliding Pucks System.

Each puck has a position (x, y), velocity vector V = (νx, νy), and radius, r. The table

boundaries are defined by the equations:

x = 0, x = n, y = 0, y = m (6.1)

Two types of collisions occur in the system: (1) puck-boundary collisions, and (2) interpuck

collisions. For each type of collision a simulation must provide both collision prediction (or

detection) and collision resolution.

6.4.1.1 Pucks and boundaries: collision prediction

At any given point in simulation time, we can calculate the time until the next boundary

collision for any puck in the system. This calculation is a function of the puck’s position

and velocity, and is a prediction, not a guarantee.10 Times to boundary collisions are given

10Subsequent to the calculation of the boundary collision time and prior to the collision itself, the puck
may be involved in an interpuck collision, potentially causing the predicted boundary collision time to be
incorrect.
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by:

tx =




tright ≡ n−(x+r)
νx

if νx > 0

tleft ≡ x−r
−νx

if νx < 0

∞ if νx = 0

(6.2)

ty =




ttop ≡ m−(y+r)
νy

if νy > 0

tbottom ≡ y−r
−νy

if νy < 0

∞ if νy = 0

(6.3)

For any puck, the time until the most imminent predicted boundary collision is:

tcollision = min(tx, ty) (6.4)

6.4.1.2 Pucks and boundaries: collision resolution

To resolve a puck-boundary collision we update the puck’s position and velocity. If

the position and velocity of the puck are given by (x, y) and (νx, νy) respectively, and

tcollision = τ , then the position of the puck (at the time of the collision) is:

x′ = x + νxτ (6.5)

y′ = y + νyτ (6.6)

And the new velocity is:

V =




(−νx,−νy) if tx = ty

(−νx, νy) if tx < ty

(νx,−νy) if ty < tx

(6.7)

6.4.1.3 Pucks and pucks: collision prediction

To determine the time until a collision between any two pucks, we solve the quadratic

equation that results from the interpretation of the distance squared between the centers

of the two pucks as a function of time. Given two pucks A and B with positions, velocities,

and radii (xA, yA), (νxA
, νyA

), rA and (xB, yB), (νxB
, νyB

), rB respectively then the distance

squared between pucks is given by:

d2 = (xB − xA)2 + (yB − yA)2 (6.8)
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To determine when the AB collision occurs (if one occurs), we evaluate the equation:

d2(t) = (rA + rB)2 (6.9)

To solve for t in Equation 6.9 we let d2(t) = at2 + bt+ c− (rA + rB)2. The coefficients are

given by:

a = (νxB
− νxA

)2 + (νyB
− νyA

)2 (6.10)

b = 2[(xB − xA)(νxB
− νxA

) + (yB − yA)(νyB
− νyA

)] (6.11)

c = (xB − xA)2 + (yB − yA)2 − (rA + rB)2 (6.12)

Solve for t by evaluating:

t =
−b±

√
b2 − 4ac

2a
(6.13)

If the quadratic equation yields two positive real roots, then the collision time, tcollision, is

taken as the minimum of the two roots from Equation (6.13) (the larger value represents

the time at which the trailing edges of the pucks will be touching i.e. the pucks will have

passed through one another). Two negative real roots or a negative discriminant indicate

that the pucks are moving away from one another or the pucks are on parallel courses and

no future collision is possible. When two pucks are traveling in the same direction and at

the same speed then a (Equation (6.10)) is zero.11

6.4.1.4 Pucks and pucks: collision resolution

Resolving interpuck collisions requires: (1) updating the puck positions to those at the

time of the collision, and (2) updating the puck velocities.

Puck positions are updated as in the puck-boundary case by Equations (6.5) and (6.6).

Updating the velocities involves: (1) establishing the normal and tangential component

velocities of the collision (and thereby creating a t-n coordinate system), (2) updating the

puck velocities relative to the t-n system, and (3) translating these updated velocities back

into the x-y coordinate system. Figure 6.27 illustrates a collision between two pucks and

shows their component velocities.

11An implementation of the system must check for this to avoid division by zero errors.
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Figure 6.27: Component Velocities of an Interpuck Collision.

We establish the normal component as a vector between the positions of the two pucks:

N = (xn, yn)




xn = xB−xA√
(xB−xA)2+(yB−yA)2

yn = yB−yA√
(xB−xA)2+(yB−yA)2

(6.14)

The tangential component is perpendicular to the normal and can be established by rotating

the normal vector ninety degrees:

T = (−yn, xn) (6.15)

To update the velocities of the two pucks, relative to the t-n system, we swap the velocities

in the normal component and leave the velocities in the tangential component unchanged.

V ′
A = (VB · N ,VA · T ) (6.16)

V ′
B = (VA · N ,VB · T ) (6.17)

With the new velocities calculated in the t-n system, we must translate the velocities back

into x-y coordinates. Let Ux and Uy be the unit vectors of x and y respectively. And let Rx

and Ry be vectors defined as:

Rx = (Ux · N ,Ux · T ) (6.18)

Ry = (Uy · N ,Uy · T ) (6.19)
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Figure 6.28: A Collision Among Three Pucks.

Then the velocities of the pucks A and B in the x-y coordinate system are given by:

V ′′
A = (V ′

A · Rx,V ′
A · Ry) (6.20)

V ′′
B = (V ′

B · Rx,V ′
B · Ry) (6.21)

6.4.1.5 Collisions involving multiple pucks

The collision resolution scheme described above generates updated velocities for two

pucks involved in a collision. When several pucks collide simultaneously, the algorithm

must pairwise resolve the collisions.12 In some cases, the resultant velocities of an N-disk

collision are not strictly independent of the serial order of resolution using this scheme.

One such case is presented in Figure 6.28. In the Figure, Puck 1 is at (8,5) and V1 is

(1,0); Puck 2 is stationary at position (10,5); and Puck 3 is at (10 +
√

2, 5 −
√

2) with

V3 = (−1, 1). Thus we see that Puck 1 is striking Puck 2 head on while at the same time

Puck 3 collides with Puck 2 at an angle of forty-five degrees. We have two choices for pairwise

collision resolution: resolve collision (1,2) then collision (2,3) or resolve collision (2,3) then

collision (1,2). Table 6.13 shows the velocity changes, and the differing resultant trajectories

12Since no general closed form solution exists for the N-body problem of colliding disks, the mathematics
described is only partially correct. We assume that these approximations are acceptable within the tolerance
levels prescribed for the simulation study.
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Table 6.13: Order of Resolution Dependence in Multiple Puck Collisions.
CASE I CASE II

Initially Coll(1,2) Coll(2,3) Initially Coll(2,3) Coll(1,2)

V1 (1,0) (0,0) (0,0) (1,0) (1,0) (-1,0)
V2 (0,0) (1,0) (−1

2 ,
3
2) (0,0) (-1,1) (1,1)

V3 (-1,1) (-1,1) (1
2 ,−

1
2) (-1,1) (0,0) (0,0)

for both cases.13

Using the pairwise collision resolution scheme we must assure that the system always

processes the same multiple puck collision in the same pairwise order – to provide repro-

ducibility of simulation results. We may achieve this by simply requiring that in any multiple

puck collision the collision involving the puck with the smallest identifier is processed first,

then the collision involving the remaining disk with the smallest identifier, and so on.14

6.4.2 A literature review of pucks solutions

The pucks model was developed specifically as a benchmark for parallel discrete event

simulation protocols [29, p. 56]. The nature of pucks – a system where the level of inherent

parallelism seems high, but for which few assumptions can be made regarding both the

times and frequencies of interactions among system objects – makes it interesting in this

respect. On the other hand, the model formulation clearly indicates a misperception of the

fundamental nature of discrete event simulation; a misperception that seems to permeate

much of PDES. For pucks, no modeling objectives are defined. The PDES view would seem

to be that if a program approximates reality in some sense, then that program must be,

by definition, a simulation. The development of Chapter 3 clearly contradicts this view.

A simulation is, first-and-foremost, a tool for decision support. Fundamental to decision

support is the formulation of a modeling objective. As stated in Chapter 2, only through

the modeling objective can meaning be assigned to a model or its results. This fact cannot

be overstated.

A brief review of pucks-related literature further illustrates this significant misappre-

13For Case I, a third collision will occur – between Puck 1 and Puck 2 – in which the final x-component
velocities given in the Table are switched.

14This scheme is utilized in [29, 52, 89, 103, 138].
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hension of the nature of discrete event simulation.

6.4.2.1 Goldberg’s model

In his thesis, Goldberg [89] originally defines the pucks system for an object-oriented

simulation of pool ball motion.

Time flow. Goldberg discusses the pool ball simulation as implemented using two time

flow mechanisms, fixed-time increment (FTI) and time of next event (TNE).15 He observes

a significant problem with an FTI implementation of the simulation is a tradeoff between

speed and accuracy, noting that accuracy of the simulation is compromised using FTI since a

collision cannot be simulated exactly at the time it occurs. At each time step the simulation

must determine if two balls have collided by determining if the balls overlap. The smaller

the time step, the greater the accuracy of the simulation; but larger time steps are viewed

as more desirable to reduce the amount of computation within the simulation. Goldberg

concludes that no good heuristics exist that indicate the optimum selection of time step

size [89, p. 6].

According to Goldberg, an event-based implementation does not suffer from the accuracy

problem of the FTI approach. In Goldberg’s TNE algorithm, all possible future collisions

are scheduled, i.e. each ball calculates the most imminent collision between itself and every

other ball and any cushions. When a ball undergoes a collision and updates its velocity, it

cancels all scheduled collisions and schedules new ones based on its new trajectory. Goldberg

claims that the TNE approach is computationally more efficient than the FTI approach in

typical cases (e.g. when the average number of collisions per time step is less than n/logn,

where n is the number of pool balls in the simulation). Algorithms for the object-oriented

solution are given in Appendix C. (Note: Figures C.1 and C.2 illustrate the behavior for

balls and cushions. The behaviors for corners and pockets are similar to cushion behavior

and are not illustrated.) The logic of the object-oriented implementation is similar to that

defined for the pure TNE implementation except that the event list is “distributed” as

objects schedule events via message passing (given the three message types: NewVelocity,

15Goldberg [89, p. 3] refers to these as the “two major temporal simulation methods: time step simulation
and discrete event simulation.”
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Collision, and Cancel).

Implications of an object-oriented solution. The object-oriented simulation execu-

tion paradigm utilized by Goldberg requires that for any value of simulation time an object

may execute (process outstanding messages) at most once (running an object more than

once for any value of simulation time can lead to incorrect results since the object may

behave differently than if allowed to process all messages at once). This causes difficulty in

modeling systems with zero time delay or, using Goldberg’s terminology, “instantaneous”

events. To illustrate this, consider the following scenario: Ball-1, resting against a cushion,

is being struck by another ball, Ball-2. Three things happen simultaneously: Ball-2 knocks

Ball-1 into the cushion, Ball-1 bounces off the cushion, Ball-1 collides with Ball-2 sending

Ball-2 back into the table. Suppose the simulation executive schedules the object execution

in the order: Ball-1, Ball-2, Cushion.16 Ball-1 receives a Collision message from Ball-2 and

sends a NewVelocity message to the Cushion then terminates. Ball-2 processes the Collision

message it sent to itself, sends a NewVelocity message to the Cushion and terminates. The

Cushion processes the NewVelocity messages. The NewVelocity message from Ball-1 causes

the Cushion to send a Collision message to Ball-1. But Ball-1 has already executed for this

value of simulation time. Further, we see that any ordering of object processing leads to a

similar conclusion. To circumvent this inherent problem of the scheduling policy Goldberg

allows the second collision to be processed after a small delay.

Sectored model. Since the complexity of the object-oriented pool ball model is domi-

nated by the number of messages, Goldberg proposes a sectorized model to cut down on the

number of messages required for the average case. In a sectored model, a ball determines

if it will collide only with the other balls in its sector, not all the balls on the table. How-

ever, the addition of sectors is not without its costs: new messages for entering and leaving

sectors are required as well as mechanisms for dealing with collisions on and around sector

boundaries. Goldberg’s algorithms for ball and sector behaviors are given in Appendix C.

The sectored algorithm contains five types of messages, which can be categorized into

two groups. First, the VelocityChange and NewVelocity messages convey information about

16During execution each object in turn is allowed to process all messages it has received whose timestamps
are equal to the simulation time.
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a ball’s change in velocity. Second, the Collision, SectorEntry and SectorDeparture messages

schedule future events, involving two balls or a ball and a sector, based on the ball’s new

velocity.17

In detail, the algorithm behaves as follows. When a ball changes velocity it sends a

VelocityChange message to each sector it occupies. Unless the ball is stationary, each

occupied sector schedules a SectorDepart for the ball. Involved sectors send NewVelocity

messages to all adjacent sectors and to all balls within the sectors themselves. If the ball’s

trajectory intercepts an adjacent sector’s perimeter, the sector schedules a sector entry by

sending a SectorEntry message to the ball and one to itself.

A NewVelocity message is received by each ball that shares a sector with the ball whose

velocity has changed. These balls determine whether they are to collide with the ball in

question. If a ball predicts a collision then it sends a Collision message to the ball whose

velocity has changed and one to itself.

Sector entry and departure. Goldberg identifies the perimeter of a sector by a list

of its corners (this representation permits myriad polygonal sector forms). The edges of a

sector connect adjacent corners in the list, e.g. a rectangular sector requires a list of five

corner points, since the first corner repeats at the end of the list. The sector departure time

of a ball from a sector is the instant a ball leaving the sector crosses its perimeter. Thus,

the departure time is the maximum of the times at which the ball crosses the sector’s edges

and corners. The sector entry time is the time an entering ball first crosses the perimeter.

Instantaneous messages. The problem of instantaneous messages, and the resolution

of allowing a small delta to separate velocity changes in serial collisions, further complicates

Goldberg’s sectored model by allowing balls to pass through each other. For example,

suppose Ball-1 is stationary against the edge of a sector and Ball-2 collides with Ball-1 as

it enters the sector. Because of a the delay in the NewVelocity message (from Ball-2 to

the sector to Ball-1 with artificial delay) Ball-1 will not recognize Ball-2 until they overlap.

Goldberg addresses this problem by having Ball-1 schedule an immediate collision with

Ball-2. This works in most cases, with some loss of accuracy in the solution. However, this

17Each of these messages is sent by the object scheduling the interaction to both itself and the other
involved object.
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solution still allows one ball to pass through another, e.g. if the time it takes for Ball-2 to

pass through Ball-1 is less than the delay.

6.4.2.2 The JPL model

The implementation of Goldberg’s simulation, as a colliding rigid disks model, for the

Time Warp Operating System (TWOS) is described in [29, 103]. According to [29], the

pucks model embodies several “fundamental” problems of PDES. The authors describe

these as:

1. Modularization Strategy. Dividing the work of building software in an organized and
rational way.

2. Object-Oriented Design. Object-oriented design of sequential simulations often stops
with the identification of the software objects corresponding to physical objects in
the simulated world or well-defined abstract objects. In distributed simulation, “the
designer must also respond to performance concerns [29, p. 27].” Objects (realized as
processes) must have an appropriate granularity and bottlenecks should be avoided.

3. Synchronization of Message Communication. The number of messages should not
grow too rapidly with the number of objects.

4. Dynamic Recomposition of Objects and Processes. A desirable quality is the ability
of objects to decompose and aggregate for performance enhancement.

5. Dynamic Load Management. Process/processor mappings must be amenable to dy-
namic reconfiguration to admit maximal performance.

A pucks model is implemented using two mini-languages, Circles – for the kinematics

and dynamics of the system, and Twang – containing the object interaction protocols.

The sectored implementation uses a simpler message protocol than that of Goldberg.

Each sector examines the trajectories of all pucks within its boundaries and schedules only

the earliest predicted collision. The sector reawakens at the time of the collision, and then

causes the involved pucks to change velocity. This cycle is repeated until the condition for

termination is met.

This protocol has the advantage that no mechanism is needed to plan/cancel collisions

and therefore the expected number of messages is lower than Goldberg’s protocol. It has

the disadvantage that the sector must predict collisions for all pucks within its boundaries

to find the earliest one. These prediction computations are distributed among the pucks

themselves in Goldberg’s solution. A risk of excessive synchronization with this protocol is
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also present since no interactions later than the earliest certain interaction are scheduled.

Speedups of up to 11.5 on a 32 node Hypercube are reported in [103].18

6.4.2.3 Lubachevsky’s model

Lubachevsky [138] proposes an optimistic implementation of pucks based on the idea

that parallelizability arises from the distance between events: essentially, if two disks are

separated by a large distance, the probability that a causal dependence between their mo-

tions will be created in the near future is small. The bounded lag approach is shown to

produce superior execution speeds to that of Time Warp when the number of processors

falls within a prescribed limit.

Lubachevsky’s simulation proceeds optimistically (albeit with some set of safeguards

programmed to reduce specific types of rollbacks) until event propagations cause an error in

the form of an out-of-order event processing. When this occurs, the system rolls back using

a checkpointing algorithm: the entire system is returned to the most recent successfully

passed checkpoint and then the “dangerous speed surge” is recomputed (with additional

serialization of computations as required for causality) to avoid the error [138, p. 194].

Lubachevsky notes that this checkpointing scheme is asymptotically nonscalable, and thus

only a finite number of processors can be effectively employed in the problem.19

In this variation of pucks the disks expand at a fixed common rate until the system

“jams up.” Since the program spends most of its computation in a dense, almost jammed

configuration where disk mobility is reduced to oscillations about a stationary position and

where boundary crossings (in the sectorized version) are rare, several simplifying assump-

tions and sundry tricks can be applied to glean execution speed which are not applicable to

the general form of pucks. However, to his credit, Lubachevsky does indicate a modeling

objective for this version of pucks, noting that it may be utilized to study the short-range

order in amorphous solids. Still, no discussion of model validation relative to a specific

modeling objective is given.

18Here speedup may be exaggerated, since it is calculated by comparing the TWOS execution time of
a simulation on multiple processors to the execution time of the identical simulation running on a single
processor under the Time Warp sequential simulator.

19Lubachevsky sets this number, however, at several thousand.
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6.4.2.4 Cleary’s model

Cleary [52] presents a solution to pucks in temporal logic using the logic programming

language Starlog. The primary difference of this approach (and the contribution of the use

of temporal logic) is the provision for collision detection rather than collision prediction.

Similar to Linda [4], the fundamental data object in Starlog is the tuple. Each puck is

modeled by two classes of tuples. The tuple collide(T,N,P,V) indicates that at time T a

puck N collided and started on a new trajectory. P gives the position (vector) of the center

of the puck at the start of the trajectory. The tuple trajectory(T,N,V,X) indicates that

at time T the puck N will be at vector position X as a result of the initial velocity at the

beginning of trajectory V. N is the integer id of the puck (this solution assumes all pucks

have the same radius and mass). Thus the trajectory of a puck is defined as the sequence of

positions of the center of the puck until the next collision involving the puck occurs. This

obviates the need for a list of collisions to be explicitly maintained. In the sectorized version

of this model, additional information regarding the owning sector is incorporated to reduce

the computation required within the trajectory calculations.

6.4.3 Pucks model definition

Arguably, the most “natural” way to describe the pucks system is to define the model

in terms of a table object and puck objects. This is illustrated in Table 6.14. The at-

tributes numCollisions and maxCollisions are defined for the top-level object to facilitate

termination. Alternatively, the system could be simulated for a specified length of time.

6.4.4 Pucks model specification

A high level description of the model behavior may likely adopt the point of view of

the active objects: the pucks. The lifetime of a puck may be described as: (1) travel until

a collision occurs, (2) update velocity and (3) repeat cycle. Here, the observation is made

that, at the CS level, some notion of how time passes must be described.20 The modeler

must indicate in the above description, how long the puck will travel before a collision

20The time flow mechanism itself has long been considered an implementation detail, such that model
behavior should be expressible independent of time flow. This example indicates that model specification at
the CS level may not in fact be time-flow-mechanism independent in all cases.
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Table 6.14: CM Object Definition for Pucks I.

Object Attribute Type Range
CP N permanent indicative nonneg int

numCollisions status transitional indicative nonneg int
maxCollisions permanent indicative nonneg int

table width permanent indicative nonneg int
height permanent indicative nonneg int

puck position status transitional indicative (0..table.width, 0..table.height)
velocity status transitional indicative (real, real)
radius permanent indicative nonneg real

occurs. This would seem, at least for this model, to force the modeler into reconciling

an implementation detail very early in development. Specifically, the modeler knows the

position and velocity of the pucks on the table (as well as the dimensions of the table itself).

From this, the modeler must describe what happens next. This could take two forms, each

reflecting the adoption of a time-flow mechanism (TFM). Assume that a given puck is at

location (x, y) and the time is given by t. The modeler may describe what happens next by:

1. Determining the time until the next collision using the kinematic equations. Allow
time to progress that far. Update the positions of all the pucks and resolve the
collisions. This reflects a time-of-next-imminent-event TFM.

2. Allow time to pass, update the position of all the pucks, and determine if a collision
occurred. If so, resolve any collisions. This reflects the adoption of a fixed-time TFM.

Clearly, an implementation must reflect a choice of time flow (as evidenced by Goldberg’s

work), and for this model, a CS description also depends on a vision for time flow. Must a

high-level representation also be time flow mechanism dependent? Nance [152] illustrates a

dependency between model performance and the time flow mechanism. His results demon-

strate that for a particular model, choice of time flow is important, and the appropriate

selection may be counter-intuitive. These observations imply that model representations

facilitating the incorporation of a suitable time flow mechanism are desirable. This subject

is addressed in greater detail in Chapter 8.

With the above issue in mind, the system may be described using the algorithm in

Figure 6.29. This algorithm indicates the adoption of the time-of-next-imminent-event

view. To facilitate this view in the CS, the object definitions must be modified to provide
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Repeat Forever

For i := 1 to Number of Pucks

For j := i + 1 to Number of Pucks

t1[i, j]← collision time(puck i,puck j)

For i := 1 to Number of Pucks
For j := 1 to Number of Boundaries

t2[i, j]← collision time(puck i,boundary j)

Clock = MIN(∀i, j :: t1[i, j], t2[i, j])
Update all puck positions to the current value of clock

Resolve all collisions for the current value of clock
End.

Figure 6.29: Algorithm for Pucks Simulation.

sequencing attributes, as illustrated in Table 6.15. The transition specification reflecting

this is given in Appendix F. Some questions involving this example are discussed below.

6.4.4.1 Functions revisited

During the development of previous models, the assertion is made that, since functions

in the CS have not been defined so as to admit model diagnosis, their use should perhaps be

limited to non-model-specific activity. However, in the development of the pucks solution,

this recommendation seems overly restrictive. To provide a transition specification for this

model composed totally of action clusters, one must in effect choose an implementation

of the kinematic equations that govern the system. For example, determining the time

at which two pucks collide involves solving a quadratic equation. To describe this using

action clusters, one could make explicit whether the two roots are to be solved together

(in the same AC) or independently, and possibly in parallel (in different ACs). Making

these types of decisions during the early specification process is counter to the philosophy

espoused in this research. Consider also that when resolving a collision between two pucks,

the normal and tangential vectors must be established. To accomplish this entirely in

action clusters forces the definition of many “artificial” attributes, such as those required

to maintain intermediate values. At the highest level, the description of model behavior

should be unencumbered by these details. At the lowest level, these details, obviously, must
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Table 6.15: CM Object Definition for Pucks II.

Object Attribute Type Range
CP N permanent indicative nonneg int

numCollisions status transitional indicative nonneg int
maxCollisions permanent indicative nonneg int
puckColl temp. transitional indicative nonneg real
bdryColl temp. transitional indicative nonneg real

table width permanent indicative nonneg int
height permanent indicative nonneg int

puck position status transitional indicative (0..table.width, 0..table.height)
velocity status transitional indicative (real, real)
radius permanent indicative nonneg real

be resolved. At the middle levels, descriptiveness should be controllable. The CS provides

this facility through the use of functions: the level of detail may be high, with much of the

model behavior encapsulated in functions; or the level of detail may be low, by appealing

exclusively to action clusters.

6.4.4.2 Looping constructs

Some mechanism must be provided by a mid-level specification language to permit block

instantiation of objects, where the number of instances is given by model input – as in the

case of the puck objects. For the CS, a for-loop notation may be adopted which provides

looping within the context of a single action cluster.21 The loop control variable is local to

the AC and binding in its function. Loop control is more general than that permitted by

many programming languages; for example, the statement

for i := (1 to N) and (i <> j) do

is permitted. Note also from Appendix F that pucks are referenced using an array sub-

scripting notation, e.g. puck[i]. Even though the object definition does not stipulate this,

we assume this method of uniquely identifying multiply-instantiated objects through these

implicit identifiers. In the absence of the highest-level specifications, the need for such a

scheme is somewhat difficult to establish.

21An alternative is to implement for-loops within a group of action clusters using the extant CS syntax.
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6.4.4.3 Multiple simultaneous updates

In this model, when updating the velocities of two pucks that have collided with each

other, both updates must be done in the context of the same “function.” That is, suppose

two pucks, p1 and p2 collide. The new velocities are determined jointly based on their

previous velocities. In the CS, functions assign a value to a single attribute. Thus, the CS

solution must somehow utilize a function to change the velocity of p1, based on the current

positions and velocities of the two pucks, then, using a separate function call, update the

velocity of p2 using the original velocity value for p1. The following solution is offered in

Appendix F. The velocity update equations are encapsulated in a function that accepts

parameter values for the two involved pucks and returns the new velocity for the puck

identified by the first parameter. Thus, the solution requires a “temporary” puck object

which maintains the original position and velocity of the first puck updated, for use during

the update for the second puck. This solution seems less than ideal. Alternatives may be

to: (1) extend the semantics of functions to permit updates to more than single attributes,

or (2) allow procedures in the CS. Each of these approaches has potential benefits and

drawbacks. Again, in the absence of the highest-level specifications, these issues cannot be

completely resolved.

6.5 Example: Machine Interference Problem

The machine interference problem (MIP) is treated in numerous sources within the

discrete event simulation community (see [152, 155, 163, 179, 180, 182]). The origins of this

example date to Palm [186], and Cox and Smith [62]. Several versions of the problem are

defined, each of which describes a class of queueing systems.

6.5.1 Problem definition

A group of N semiautomatic machines (1 < N < ∞) fail intermittently and must be

repaired by an operator. Both failure and repair rates are distributed as Poisson random

variables with parameters λ and µ respectively. The parameters λ and µ are assumed

the same for each machine in the assignment. The model may be viewed as illustrated in

Figure 6.30 which shows a system with N = 12.
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Figure 6.30: A Configuration for the Machine Interference Problem where N = 12.

Variations of the problem may be defined based on the method of failure detection.

First-failed. The operator begins at an idle location (usually central to the group of ma-
chines). When a failure occurs, the operator travels to the machine and repairs it.
Upon completion of a repair, if no machines are failed, the operator returns to the
idle location. Otherwise, if one or more machines are failed, the operator travels to
each machine (in first-failed-first-served order) and repairs it. If the travel time of the
operator is zero, this problem defines the M/M/1 class of queueing systems.

Closest-failed. To detect failures, the operator patrols the interior perimeter of the assigned
group of machines in a unidirectional path. The distance between machines is assumed
equal for each adjacent pair, and the rate at which the operator travels is assumed
constant. This problem defines the M/G/1 class of queueing systems.

If multiple operators are defined (each following either the first-failed or closest-failed dis-

cipline), then the problem defines the M/G/s class of queueing systems.

6.5.2 Single operator/first-failed

The object definitions for the single operator/first-failed (SOFF) model of the machine

interference problem are given in Table 6.16. The model contains three object “classes:” (1)

the top-level object, which is given attributes describing the number of machines, maximum

number of repairs to simulate, and mean values for the operating and repair times, (2) the
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Table 6.16: CM Object Definition for Single Operator/First-Failed MIP.

Object Attribute Type Range
SOFF N permanent indicative nonneg int

maxRepairs permanent indicative nonneg int
repairMean permanent indicative nonneg real
workingMean permanent indicative nonneg real

machines[1..N] status status transitional indicative (operating,failed,
inRepair

failure temporal transitional indicative nonneg real
arrival temporal transitional indicative nonneg real
endRepair temporal transitional indicative nonneg real

repairman status status transitional indicative (busy,avail,inTransit)
location status transitional indicative (idle,1..N)
arriveIdle temporal transitional indicative nonneg real
numRepairs status transitional indicative nonneg int

machine class, which stipulates N machine instantiations, and defines attributes indicating

machine status, and times of the next failure, arrival of the repairman, and end of repair,

and (3) the repairman, with attributes indicating status, location, and number of repairs

completed, as well as an attribute containing the time at which the repairman will next

arrive at the idle location.

The transition specification for the SOFF model is given in appendix G. The specifi-

cation contains eight action clusters: initialization, termination, failure, begin repair, end

repair, travel to failed machine, travel to idle, and arrive idle.

6.5.3 Multiple operator/closest-failed

The object definitions for the multiple operator/closest-failed (MOCF) model of the

machine interference problem are given in Table 6.17. The object definition for the MOCF

model is similar to that of the SOFF model, except that M instances of the repairman are

defined, the attribute arriveIdle is replaced by the attribute, t, containing the inter-machine

travel time, and the attribute numRepairs is attached to the top-level object rather than

an individual repairman.

The transition specification for the MOCF model is given in appendix G. The specifica-

tion contains seven action clusters: initialization, termination, failure, arrival, begin repair,
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Table 6.17: CM Object Definition for Multiple Operator/Closest-Failed MIP.

Object Attribute Type Range
MOCF N permanent indicative nonneg int

maxRepairs permanent indicative nonneg int
repairMean permanent indicative nonneg real
workingMean permanent indicative nonneg real
numRepairs status transitional indicative nonneg int

machine[1..N] status status transitional indicative (operating,failed,
inRepair)

failure temporal transitional indicative nonneg real
arrival temporal transitional indicative nonneg real
endRepair temporal transitional indicative nonneg real

repairman[1..M] status status transitional indicative (busy,idle)
location status transitional indicative (inTransit,1..N)
t permanent indicative nonneg real

end repair, and travel to next machine.

6.6 Summary

In this chapter, the representational provisions of the CS are evaluated with respect to

the CM through the development of four example models: (1) a multiple virtual storage

batch computer system, (2) a traffic intersection, (3) a system of colliding rigid disks, and

(4) the machine interference problem. The evaluation outlines needed enhancements to

the representational facilities of the CS. The collection of CS primitives is extended to

include insert, remove, member, find and class such that support is provided for

CM set definition. A new form for the report specification is described and the notion of

an augmented specification is introduced. The need for an experiment specification – to

capture information such as the condition for the start of steady state – is also identified.

If the CS is viewed as serving a mid-level role in the hierarchy described in Chapter 3,

the results of this chapter establish a basis for high-level support within the context of either

a wide-spectrum or narrow-spectrum approach.
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Chapter 7

MODEL GENERATION

He differentiated between existence and Existence, and knew
one was preferable, but could not remember which.

Woody Allen, Side Effects

At the outset of this research, the Condition Specification is assessed as most suited

to provide model representation at the middle level of the hierarchy described in Chap-

ter 3. The role ascribed to the CS is that of a platform for model analysis. The Conical

Methodology is proposed to be part of a next-generation modeling framework in Chapter 5,

and toward this end, the development given in Chapter 6 examines methods by which the

representational capabilities of the CS may be refined and extended to fully support the

provisions and tenets of the CM. The results of Chapter 6 are independent of the adop-

tion of a a narrow-spectrum approach – the existence of a high-level specification language

separate from the CS – or a wide-spectrum approach – utilizing the CS as a high-level

representation. Model generation is not a primary consideration in this effort, since issues

in model generation have dominated SMDE research for many years. For completeness

of presentation, this chapter primarily serves as a review and evaluation of the relevant

model generation approaches produced by SMDE investigation. Based on the development

of Chapter 6, some observations relating to new directions are also offered.

7.1 Prototypes

Model generator investigation within the SMDE may be divided into two categories: (1)

dialogue-based approaches that support the Conical Methodology, and (2) graphical-based
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approaches that support the definition of a new conceptual framework.

7.1.1 Dialogue-based approaches

The earliest model generator efforts within the SMDE date to the early 1980s. At the

time, a primary challenge for the model generator designer was identifying mechanisms

through which a model description could be effectively coerced from a modeler given the

limitations of the standard character-based terminals. One mechanism that has been inves-

tigated is to engage the modeler in a menu-driven “dialogue.”

Three dialogue-based model generator prototypes have been developed for the SMDE.

Each supports the Conical Methodology, and is briefly described below.

7.1.1.1 Box-Hansen

Hansen [96] describes the first prototype model generator for the SMDE. Developed

with assistance from C.W. Box, the Box-Hansen prototype supports model definition under

the Conical Methodology. The generator provides an interactive dialogue through which a

modeler may define the objects that comprise a model, and attach (and type) attributes

to those objects. The Box-Hansen prototype also allows the definition of sets within a

model. However, the prototype offers little assistance to the model specification phase of

the CM, admitting only unstructured natural language descriptions of model behavior. No

provisions are given for analysis of this specification nor is the model specification evaluated

with respect to the model definition.

7.1.1.2 Barger

Barger [25] describes a follow-on effort to the Box-Hansen prototype. Using the existing

model generator to capture a CM model definition, the Barger prototype provides a leveled

dialogue approach to derive the specification of indicative attributes using the CS as the

target form. Barger’s prototype also includes provisions for acquiring study documentation.

Barger suggests that the specification of status transitional indicative attributes may provide

the key to the derivation of a complete specification since a modeler is able to provide a

“foundation” by describing the value changes of these attributes. Although designed to use

the Box-Hansen model generator as a front-end, the two prototypes remain unconnected.

171



CHAPTER 7. MODEL GENERATION

7.1.1.3 Page

The most recent effort in dialogue-based model generators is described by Page [182].

The Page prototype represents the conceptual integration and extension of the Box-Hansen

and Barger prototype efforts. Implemented in a window-based environment, the Page pro-

totype fully supports model development under the Conical Methodology utilizing the Con-

dition Specification as the target form for representing model behavior. To enable the

specification of sets, four set operations are defined for the CS (similar to those listed in

Chapter 6). The Page model generator provides some limited analytic functions such as

attribute initialization, utilization and consistency (see Chapter 5), and the CM restriction

that model definition precede model specification for any object is also enforced. Page echos

Barger’s conclusion that status transitional indicative attributes serve a primary role in the

derivation of a complete model specification [182, p. 42].

7.1.2 Graphical-Based Approaches

In 1987 a divergence in the SMDE research in model generation occurred. Prior efforts

had served strictly to support the Conical Methodology using dialogue-based model genera-

tors. The popularization of window-based software, and the potential benefits of animating

simulation models, spurred a new investigation to support the definition of a conceptual

framework suitable for “visual” simulation model development.

To date, two prototypes have been completed in this graphical-based effort. These are

described briefly below. A production system based on these two prototype efforts known

as the Visual Simulation Environment (VSE) is scheduled for completion by the fall of 1994.

7.1.2.1 Bishop

Bishop [32] describes the General Purpose Visual Simulation System (GPVSS). GPVSS

represents an SMDE prototype for visual simulation; it provides model definition, model

specification and model translation into executable code, as well as animation of the simula-

tion. Although congruous with many precepts of the CM, GPVSS does not directly support

the methodology. GPVSS is based on a graphical, object-oriented, activity-based approach

to model development. GPVSS identifies a model as being composed of submodels which

contain static objects through which dynamic objects travel during a simulation. Submod-

172



CHAPTER 7. MODEL GENERATION

els and objects are defined graphically using a graphical editor. The paths that dynamic

objects take through the simulation are also graphically defined. Within the GPVSS, spec-

ification of model behavior is very low level: the modeler must utilize C-based macros, and

in many cases provide C code.

7.1.2.2 Derrick

Derrick [66] describes the Visual Simulation Support Environment (VSSE). The VSSE is

a prototype implemented to test the functionality of the multifaceted conceptual framework

for visual simulation modeling (DOMINO), and represents a major extension of the GPVSS

effort. The DOMINO, and its associated visual simulation model specification language

(VSMSL), represent the core of the production VSE.

The DOMINO. According to [66, p. 38], an important, if not pervasive, influence during

the development of the DOMINO was:

. . .the desire for an approach which allows the modeler to represent a model and
its components exactly as they are conceptually or naturally perceived. Like
[what-you-see-is-what-you-get] WYSIWYG, this could be described as WYSI-
WYR (What You See Is What You Represent) capability. The modeler needn’t
have to contort his own view of the model in order to fit the requirements of the
conceptual framework under which he is guided.

At the most basic level, a DOMINO model of a system is comprised of model components

and the interactions among these components. Derrick classifies model components using

four categories [66, p. 40]:

• Real components have a direct correspondence to a component in the system being
modeled. Real components are “visualized.”

• Virtual components do not have a direct correspondence in the system and are not
visualized. Virtual components are typically linked to model features not having
a “real” representation such as components for statistics collection, random variate
generation, model startup and so on.

• Dynamic components are movable. Movement may be in three forms:

– Spatial movement is reflected as physical movement of real dynamic components
between model components during animation.

– Temporal movement reflects the passage of time relative to a real or virtual
dynamic component.
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– Logical movements are changes in the logic decision path of a real or virtual
dynamic component.

Derrick [66, p. 50] points out that dynamic components move throughout the static
and dynamic structures (see below) of the model. Movement up and down in the
model static hierarchy is via decomposed submodels (see below). Within a submodel,
a dynamic component can utilize the resource of a static component. Dynamic com-
ponents can also move into decomposed dynamic components and among its member
subdynamic components and base dynamic components (see below).

• Static components are physically at rest (if real) and immovable (whether real or
virtual). Furthermore, these components are permanently within the model, staying
within the model boundaries for the duration of model execution.

These model components form model structures. Two types of model structures are

identified: (1) a model static structure, and (2) model dynamic structures. Only one model

static structure exists for any model – this structure has the model itself as its root –

although it may be comprised of a hierarchy of simple static structures. A model may have

multiple dynamic structures. Based on these structures, five additional classifications for

model components are defined [66, p. 41]:

• A submodel is the root of a simple static structure with children of zero or more
submodels and zero or more static objects.

• A static object is the most basic model component of interest in a simple static struc-
ture and, as such, cannot be decomposed.

• A dynamic object is the dynamic model component which is the basis (root) for model
dynamic structures and is decomposable.

• A subdynamic object is the root of a simple dynamic structure and can be decomposed
into zero or more subdynamic objects and zero or more base dynamic objects.

• A base dynamic object is the most basic model component of interest in a simple
dynamic structure and cannot be decomposed.

According to Derrick [66, p. 41], the choice to represent a system component which

is static as a submodel or static object is based primarily on the expected need for a

decomposition point in the model hierarchy.1

1Derrick [66, p. 42] observes that the greatest flexibility in development is retained by modeling system
components as submodels. However, he notes, “other considerations related to visualization/animation
requirements could dictate otherwise.”
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Model definition. Under the DOMINO, modelers identify class information such as

attributes, and inheritance hierarchies. Model decomposition points are identified and a

background image is associated with each. These background images, called layouts, provide

the visual landscape over which the dynamic objects travel. A set of images is defined for

each class. Each component within the layout image is identified by graphically binding the

image portion corresponding to the component.

Dynamic object movement between or among model components is specified for each

layout by the creation of roadways or paths. These paths connect the model components

that exist within each layout. Connectors are also created within the layouts to facilitate the

movement of dynamic objects, both into (entry connectors) and out of (exit connectors) the

layout, relative to higher levels. Top-level layouts (for the model and decomposed dynamic

objects), therefore, do not have connectors.2

Interaction points, or interactors, are created which permit dynamic object interaction

with static and base dynamic objects. During animation, dynamic objects are said to move

into decomposable components and to non-decomposable components.

The spatial description of a layout’s image which includes designating model compo-

nents, connectors, interactors and paths is called a layout definition. Each layout image

must have a layout definition. Besides layout definitions, a modeler must also state the

explicit rules governing component behavior. The mechanism for this is described below.

Model specification. The behavior of model components is described using an English-

like specification language called the visual simulation model specification language (VSMSL).

According to Derrick [66, p. 144] the VSMSL, “enables modelers to specify model dynamics,

[and] the rules for component interaction, at a high level.” The VSMSL is utilized in three

types of “logic specifications” under DOMINO [66, p. 70]:

• Supervisory logic. Models built with supervisory logic are machine-oriented. The
supervisors (machines) are the principle influencers for model execution. The dy-
namic objects (material, transactions) are manipulated and moved from component
to component.

• Self logic. Self logic is attached to a dynamic object which executes and determines
its own destiny. Models built entirely around self logic are called material-oriented.

2Movement downward from a level must be directed toward the entry connector at the lower level.
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• Method logic. Logic attached to a component class and activated by sending a message
to an owning component in the class.

The VSMSL contains twenty-five statement types supporting a wide variety of behavior

ranging from attribute assignment, to component movement, to display manipulation. In

VSMSL, each reference to a model component includes a reference to its type (e.g. submodel,

static object, dynamic object, subdynamic object, base dynamic object). The language

provides abbreviations, sm, so, do, sdo and bdo for these types. Figure 7.1 contains a

VSMSL description (in supervisory logic) of a queue for a block within a traffic intersection

example similar to the one given in Chapter 6. The figure is taken from [66], and is given

here simply to provide an indication of the nature of the VSMSL. For a complete description

of the VSMSL and the DOMINO, refer to [66].

7.1.2.3 Evaluation

A discussion of the VSSE (as supported by DOMINO and the VSMSL) and the philos-

ophy of this research effort is warranted. Firstly, does the VSSE fit within the structure

of a next-generation framework as presented in Chapter 3? The answer is: not directly.

The philosophy adopted here is that visualization of a simulation model is merely one of

a wide variety of implementation options. Iconic forms may indeed be useful for model

development (see the discussion in Chapter 3), but they need not necessarily correspond

to a given set of animation requirements or forms. When animation of the model is not

a project objective (and admittedly, this may be a rare occurrence), no animation-related

information should be required during model development. The DOMINO and the VSMSL

tightly couple model development to a particular implementation detail: animation.3 As

such, they are incongruous with the philosophy espoused in this effort. Two additional

observations may be made regarding the DOMINO and VSMSL:

• The VSMSL, while English-like in nature and expressive enough to represent a wide
variety of behaviors, is in some respects at a lower level than many SPLs. Consider
the VSMSL excerpt given in Figure 7.1. The code:

3This coupling is largely a function of the philosophy of graphical model development underlying the
DOMINO.
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– BLOCKQUEUE SUBMODEL CLASS SUPERVISORY LOGIC

– *********************************************

– * If there are others waiting or the blockspace is busy, join the queue and

– * wait until first in line and blockspace is idle.
– *********************************************

if attr numberWaiting of this sm is> 0 or

attr status of so blockSpace is BUSY@ then

begin

add 1 to attr numberWaiting of this sm;
put attr numberWaiting of this sm into holdingVar;

put sys attr ident of this do into

attr vehicleList[holdingVar] of this sm;

engageIn waiting until attr vehicleList[1] of this sm is
sys attr ident of this do and attr status of so blockspace is IDLE@;

– Reset every vehicle’s position in the queue

put attr numberWaiting of this sm into holdingVar;

subtract 1 from holdingVar;

repeat with i = 1 to holdingVar
begin

put i+1 into dynObjId;

put attr vehicleList[dynObjId] of this sm into

attr vehicleList[i] of this sm

end;
subtract 1 from attr numberWaiting of this sm

end

– *********************************************

– * Otherwise, proceed immediately through queue.

– *********************************************

Figure 7.1: Supervisory Logic for a BlockQueue in VSMSL.
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add 1 to attr numberWaiting of this sm;
put attr numberWaiting of this sm into holdingVar;
put sys attr ident of this do into

attr vehicleList[holdingVar] of this sm;

merely implements an enqueue operation. Dequeueing is specified using:

put attr numberWaiting of this sm into holdingVar;
subtract 1 from holdingVar;
repeat with i = 1 to holdingVar
begin

put i+1 into dynObjId;
put attr vehicleList[dynObjId] of this sm into

attr vehicleList[i] of this sm
end;
subtract 1 from attr numberWaiting of this sm

Some higher-level constructs should be provided to support these common mecha-
nisms.

• The requirement that the possible paths of dynamic objects must be a priori deter-
minable limits the classes of systems that can be animated. The static path paradigm
is suitable for manufacturing systems, and networks, but less suitable for systems such
as a colliding pucks (see Chapter 6) or a typical military simulation – through which
targets may travel and are intercepted at any point in a three-dimensional space. To
animate systems such as these, a preferred approach is to describe the movement of
model objects in terms of a model coordinate system. Movements in the model may
then be translated into a display coordinate system for animation.

Despite the obvious differences in the philosophy of this approach and that of the VSSE

effort, the VSSE investigation has contributed significantly to the theory of visual simu-

lation, and simulation modeling methodology as well. Conceivably, minor changes in the

DOMINO and VSMSL could produce an approach suitable for incorporating visual imple-

mentations within the general framework described in Chapter 3. Certainly, the lessons

learned from the VSSE effort must be recognized in any framework that supports model

animation as a project objective.

7.2 New Directions

Despite the existence of the fully functional Page prototype, the development given in

Chapter 6 is accomplished without automated assistance. The two primary reasons for this

are:
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1. The platform hardware for the prototype is tenuous, and has been unsupported by
the manufacturer for several years. Porting the prototype to a new platform would
require considerable effort, and has been deemed a low priority for this research effort
in light of the second motivation.

2. The desire to permit the development of this research to be unbiased relative to prior
efforts and conclusions.

Thus, the following discussion adopts the perspective of a modeler who has worked directly

in the Condition Specification, without automated assistance. Based on these experiences,

some thoughts are given regarding new ways of coercing a CS from a modeler. First, a

discussion of the attribute-oriented approach to model specification provided by the Barger

and Page prototypes.

7.2.1 Attribute-oriented development

Both the Barger and Page model generators encourage model specification by starting

at the leaves of the model development tree – the attributes. An attribute is selected,

a value change is described, and a condition is associated with that value change. The

motivation for, and observation resulting from, these two efforts is that by causing a modeler

to describe model behavior in this fashion, the specification is quickly “fleshed out,” i.e. the

value changes of a single attribute are typically described in a consecutive manner. This

results in the identification of several model conditions. For typical models, the entire

“condition structure” can be generated from the value changes of just a few (typically,

status transitional) indicative attributes.

However, the question must be asked: does this conform to a “natural” view of model

behavior? That is, when one envisions an object-based model, does the first thought regard-

ing model behavior center around an attribute value change? For some modelers, perhaps,

but certainly not for all. The models in Chapter 6 are specified in the CS using an action

cluster-oriented perspective. Modelers may also prefer other, more traditional, conceptual

frameworks. Some alternative approaches for model generation under the CM/CS based on

the experience gained from Chapter 6 are described below.
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7.2.2 Action cluster-oriented development

When a modeler envisions model behavior, the picture may take the form, “when this

occurs, that also occurs.” When the CS is the language of discourse – and the modeler is

working at the CS level – this phenomenon produces an action cluster-oriented depiction of

model behavior. In traditional CFs, and languages supporting these CFs, this phenomenon

might describe an event or activity.4 Interestingly, even when the CS is the target language,

a modeler familiar with traditional CFs will likely identify those conditions which represent

the “root” condition of an event or activity. Consider the situation depicted in Figures 6.7

and 6.8. These figures represent an end-of-service event at the JESS for the MVS model

and the corresponding action clusters. A modeler working in the CS may think of the when

alarm condition first, and mentally lump all the actions from the event into the action

cluster for that condition. Only upon recognizing that a “sub-condition” is present will the

decomposition given in Figure 6.8 be accomplished. This observation illustrates that the

CS, while independent of traditional CFs, does not directly provide a CF facilitating model

development at the highest levels. Still, an action cluster-oriented development could be

helpful. Two different approaches are evident.

7.2.2.1 Action cluster-oriented dialogue.

A dialogue-based model generator for the CS, such as those of Barger and Page, could

readily permit the model to be constructed in an action cluster-oriented fashion. The

dialogue would merely involve the primary identification of conditions with a secondary

association of actions. A more interesting possibility is the use of the action cluster incidence

graph (ACIG) as a basis for graphical development.

7.2.2.2 A graphical approach.

Historically, the ACIG has been constructed from the textual CS representation, and

has functioned solely as a platform for model analysis. However, this incidence graph could

be utilized to foster model development in an action-cluster oriented approach.

4If the modeler naturally views the system using a process view then these events relate to a particular
model object.
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A model generator could provide an iconic interface through which an ACIG might be

constructed. For example, a modeler could create a set of nodes, each identified by a name

or perhaps number. Exploiting iterative refinement, a modeler could “click on” a node and

be given the opportunity to describe the condition and associated actions. When “sub-

conditions” become apparent, the node is decomposed. A modeler might be permitted

to connect any two nodes, irrespective of establishing the criteria for connection, using

solid or dashed arcs. The system could easily identify all unsubstantiated connections, as

well as automatically generating connections between nodes based on the rules for ACIG

construction. The ACIG simplification routines identified by Puthoff [194] could also be

incorporated.

7.2.3 Traditional world view-oriented development

As observed above, even when the CS is the target language, model development is

often facilitated by adopting a traditional world view. Overstreet illustrates how a CS may

be transformed into a specification adopting either the event scheduling, activity scan, or

process interaction world views. Overstreet also postulates that an equivalent CS can be

constructed for any model specification in any programming language [178, p. 247]. While

the veracity of this statement is difficult to assess, certainly any model specification that

conforms to the Conical Methodology can be transformed into an equivalent CS, regardless

of its CF.

Similar to the incidence graph-based approach described above, a model generator could

be constructed which provides CM-oriented variants of event graphs, process graphs, or

activity diagrams which could be used to generate a CS.
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MODEL ANALYSIS AND EXECUTION

For one thing, they used computers constantly, a practice
traditional mathematicians frowned on. For another . . .they
appeared to care that their mathematics described something
that actually existed in the real world.

Michael Crichton, Jurassic Park

A set of requirements for a next-generation modeling framework is proposed in Chap-

ter 3. An abstraction that implies model development through transformation is also pre-

sented. The basic tenets of modeling methodology stipulate that the overriding objective of

simulation is producing a correct decision. Thus the hierarchy of representations suggested

by the abstraction must support this objective. As recounted in Chapter 3, history indi-

cates a strong correlation between the correctness of the decision and the correctness of the

model upon which the decision is based.

For this research effort, the Conical Methodology has been suggested and evaluated as

a suitable methodology to support a next-generation modeling framework. The objective

of correctness is facilitated (in part) through the provision of high-level implementation-

independent descriptions of the model. These descriptions evolve through a series of refine-

ments until an executable model suitable for a given set of implementation requirements

is produced. The nature of the model evolution, and the level of automatability is, how-

ever, largely a function of the representational forms, the target implementation, and its

concomitant level of maturity as a technology.

The focus of this research in terms of model representation has been at the middle level

of the framework. The Condition Specification is proposed as an intermediate represen-
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tational form for model diagnosis. The implications of this language choice for envisaged

higher-level representations are evaluated in Chapters 6 and 7. In this chapter, the relation-

ship between the CS and lower-level forms is investigated. Generating an executable model

from a CS representation may be affected in two ways: (1) translating the CS representation

into an (several) appropriate implementation language(s), or (2) directly implementing the

CS representation. Addressing the first approach requires the identification of a specific

set of implementation requirements. As suggested by Figure 3.4, the number of possi-

ble combinations of implementation requirements is considerable. The objectives of this

research effort favor broadness of concept and generality of solution. Therefore, the de-

velopment of this chapter focuses on the area where support is potentially most general:

directly implementing a CS representation. Note that translating the CS into a variety of

implementation languages fulfills the transformational hierarchy using a narrow-spectrum

approach (see Chapter 3). Defining methods for directly implementing the CS effectively

widens the spectrum of the language. Both approaches merit investigation, even beyond

that possible in the limited scope of this effort. The groundwork is laid here with a precise

characterization of the semantics of a CS transition specification.

8.1 A Semantics for the Condition Specification

Overstreet’s characterization of a model implementation is reviewed in Chapter 5. If

A(M, t) is a model attribute set for a model specification M at time t. A model specification

is a model implementation if,

1. For any value of system time t, A(M, t) contains a set of state variables.

2. The transition function describes all value changes of those attributes.

Thus, if “system variables” have been added to the object specification set so that A(M, t)

always contains a state set, then the transition description must contain a complete descrip-

tion of how these additional attributes change value. The model implementation serves as

the basis for model execution. The nature of the implementation of a simulation model

varies according to the representational mechanism, and its associated semantics. In this

section, the existing CS semantics are evaluated and, where necessary, re-stated to facilitate

the more definitive mid-level role (in either a narrow-spectrum or wide-spectrum context)

intended for the language within this research effort.
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8.1.1 Interpretation of a condition-action pair

The basic element of a CS is the condition-action pair (CAP). According to Over-

street [178, p. 89]:

The semantics of a CAP are straightforward: whenever the condition is met in
the model, the specified action takes place.

For reasons explicated in the subsequent development of concepts, the semantics of a CAP

adopted here are stated as follows:

The action of a CAP may occur only if the corresponding condition is true.

8.1.2 Interpretation of an action cluster

As outlined in Chapter 5, CAPs with identical conditions form action clusters (ACs).

Overstreet [178, p. 70] asserts:1

In interpreting a [model specification] MS, each CAP is to be treated as a “while”
structure rather than an “if” structure. The difference is this: as an “if” the
actions of the CAP would occur exactly once when the condition is met; as a
“while” the actions repeat until the condition is no longer met.

The motivation for choosing a while-semantics is to accommodate an envisaged clock update

policy: the clock is only updated when all model conditions are false. Thus, when a condition

becomes true, it remains true until a specific action causes the condition to become false. For

determined action clusters (DACs), the while-semantics is accommodated by implication,

i.e. the alarms are assumed to “go off” only once. Overstreet [178, p. 280] states that for

each contingent action cluster (CAC):

at least one output attribute should also be a control attribute for the CAC.
. . .Recall that the interpretation of a CAC is a “while” construct rather than an
“if.” If the CAC cannot potentially alter the condition, an infinite loop results.
To eliminate the infinite loop, it is not sufficient that some other AC can occur in
the same instant as the CAC which can alter the value of the CAC’s condition.
For if this were true, the CS would contain unresolved order dependencies.

The diagnostic technique of action cluster completeness (or determinancy, see Chapter 5)

is defined to detect the presence or absence of these infinite loops under this semantics.

1In this passage Overstreet refers to a CAP, but actually intends AC.
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Whenever thisEvent happens

if x = 10 then

y := y + 1

if z then
p := 2

if q then

r := 3

WHEN ALARM(thisEvent):

B$1 := true

B$1 AND x = 10:
y := y + 1

B$2 := true

B$3 := true

B$1 := false

B$2 AND z:

p := 2

B$2 := false

B$3 AND q:

r := 3
B$3 := false

Figure 8.1: An Event Description with Nested Logic and the Corresponding Action Clusters.

A strict while-semantics, and the associated requirement that the intersection of the out-

put attribute and control attribute sets for any CAC be nonempty, is problematic because

these requirements presuppose that every AC is always a candidate for execution.2 This fact

is readily seen when considering the problem of generating a CS from higher-level forms.

Consider the situation illustrated in Figure 8.1. Here a simple event description consisting

of some nested logic is presented. Also given are the action clusters that might be generated

from this event description using a procedure similar to that described in Chapter 6. Note

the “overhead” in terms of assignments to Boolean variables necessary to satisfy the crite-

rion for action cluster completeness. Clearly this technique could easily become “messy”

for large models and complex condition structures. While the manipulation of additional

Boolean variables may not inhibit automated translation, a significant encumbrance may be

introduced viz. the human understanding of the CS. Figure 8.1 demonstrates that an event

description (at some arbitrarily high level of representation) may contain many conditions,

each of which determines one or more actions. However, these actions need not necessarily

affect the value of their “owning” condition. Some conditions (e.g. x = 10) may remain true

2Here execution refers to the evaluation of the condition on the AC, followed, if the condition is true, by
the performance of the actions given by the AC.
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after the body of the event routine is exited. An important recognition is that in the case

of Figure 8.1, the three CACs must always be coincident with the determined AC. If the

determined AC is not a candidate for execution at some point in a model implementation,

then the truth values of the conditions on the coincident CACs are irrelevant.

Based on the above observation (and in order to support the model of computation

defined subsequently) the semantics of an AC are revised within the context of this research

effort:

Whenever the condition is tested, if the condition is true the associated actions
occur.

The ordering of actions in an AC is not stipulated. Overstreet proves that determining an

(inter-AC or intra-AC) ordering dependence among arbitrary model actions is undecidable

(see Chapter 5). For general purposes, the actions of an AC may be regarded as sequential,

given some modeler-specified ordering. However, for certain implementations, e.g. those

requiring the exploitation of parallelism, other interpretations may be useful.

8.1.3 Interpretation of action cluster sequences

The execution of a CS on a hypothetical machine may be described in terms of a sequence

of action clusters. The first action cluster in the sequence is the initialization AC, and

the last, termination. Linking initialization and termination is a collection of time-based,

state-based and mixed action clusters. Since any CS containing mixed action clusters may

be transformed into an equivalent CS containing only time-based and state-based action

clusters ([178, p. 215]), the action cluster sequence may be viewed as containing only DACs

and CACs. Overstreet [178, p. 193] observes that this sequence forms a chronology of model

actions as depicted in Figure 8.2. The figure illustrates an action sequence graph (ASG).

An ASG provides similar information to an ACIG except that an ASG connotes the actual

causal relationships resulting from some execution of the CS (on a hypothetical machine).

A formal relationship between the two graphs is established below.

The ASG in Figure 8.2 depicts a trajectory of model execution at some point in sim-

ulation time subsequent to model initialization. State changes occur as the result of a

time-ordered execution of determined action clusters.3 Coincident in (simulation) time

3Here time refers to simulation time.
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Figure 8.2: Action Sequence Graph. Each determined action cluster (D) must be scheduled
prior to its occurrence. After model initialization, some dashed arc must lead into each D.
Each contingent action cluster (C) may be caused by either a D or a C, but must occur in
the same instant as some D. Thus each instance of a D can cause (directly or indirectly)
a “cascade” of Cs in the same instant in the following manner: the D may change the
condition of one or more Cs to true and their actions may change the conditions of other
Cs to true, and so on.

with a determined action cluster are zero or more contingent action clusters. Although not

implied by Figure 8.2, determined action clusters may also be coincident in time. This can

occur in two ways: (1) two (or more) alarms are set for the same future value of simulation

time, or (2) an alarm is set to go off “now.” Strict event scheduling paradigms preclude the

latter situation (in terms of events), but the former is always a possibility in any discrete

event simulation model.

Overstreet’s treatment of a semantics for coincident action clusters is incomplete for our

purposes. He states [178, p. 89]:

Note that it is possible for several conditions to be true simultaneously. In this
case, the actions are considered to occur simultaneously.

Unclear from this statement is whether this rule applies only to a model specification – in

which all the actions may appear to occur, in some sense, simultaneously (at least during

the same instant), or also to model implementation – for which the validity of such a rule

would be difficult to formulate. For this effort, the following semantics for coincident action

clusters is proposed.
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8.1.3.1 Precedence among contingent action clusters

As indicated by the ASG in Figure 8.2, a “cascade” of CACs may follow the execution

of any DAC. This cascade is formed by precedence relationships among CACs for any given

instant of model execution. If a directed path exists in the ASG between ACi and ACj then

ACi precedes ACj for a particular instant since the execution of ACi causes (directly or

indirectly) the execution of ACj . If no directed path between two ACs exists in the ASG,

then an ordering on their execution cannot be established. In this case, if the two ACs

possess read-write or write-write conflicts (see Chapter 9) then the model implementation

may be ambiguous.

8.1.3.2 Precedence among determined action clusters

As previously stated, two or more DACs may be coincident in (simulation) time during

a given model execution. These DACs may appear as “sources” for a cascade of CACs

in the ASG. A sequenced order of execution for the ACs may follow two general patterns:

(1) execute all DACs, followed by all CACs subject to the precedence relationships among

the CACs, or (2) consecutively execute each DAC and its associated CACs. Based on the

translation scheme between the CS and higher-level event-based forms outlined in Chapter 6,

only the latter approach is correct when “mutually interfering” events occur during the same

instant. This distinction is elaborated below.

For purposes of the following discussion, let E1 and E2 be event descriptions in some

high-level model representation adopting an event scheduling world view. We say that E1

and E2 are mutually interfering, denoted E1 1 E2, if: (1) the actions of E1 are conditional

on the occurrence of E2 and similarly the actions of E2 are conditional on the occurrence

of E1, and (2) E1 and E2 occur during the same instant.4 The following are mutually

interfering events.

4Note that this definition may be extended to more than two events. In fact, it may be readily demon-
strated that mutual interference (1) forms an equivalence relation.
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{ Event E1 }
Whenever A happens

if event B has not occurred
during this instant

do w
else

do x

{ Event E2 }
Whenever B happens

if event A has not occurred
during this instant

do y
else

do z

If these two events occur simultaneously, then a serial execution produces either the state

resulting from w and z (E1 followed by E2) or the state resulting from y and x (E2 followed

by E1). If a serial ordering of execution is not provided, the results are indeterminate.5

Using the event-AC correspondence illustrated in Chapter 6 the following ACs may be

produced from the event routines E1 and E2.

{ AC1 }
when alarm(A):

B$1 := true
A := true

{ AC2 }
B$1 and B:

x
B$1 := false

{ AC3 }
B$1 and not B:

w
B$1 := false

{ AC4 }
when alarm(B):

B$2 := true
B := true

{ AC5 }
B$2 and A:

z
B$2 := false

{ AC6 }
B$2 and not A:

y
B$2 := false

If the execution of action clusters is such that both DACs are executed prior to the CACs,

then the following sequence is possible: AC1, AC4, AC2, AC5. This sequence produces a

state resulting from x and z. Thus, separation of the DACs from their associated CACs

during execution may result in an “interleaving” of events. If these coincident events are

mutually interfering, such an execution sequence is incorrect.

8.2 Direct Execution of Action Clusters Simulation

Based on the semantics given above, algorithms for the direct execution of action clusters

simulations may be defined. Note however, that several properties of interest, such as

5For an historical perspective on the problem of handling simultaneous events refer to [187]. Some issues
involving simultaneous events and parallel simulation are presented in [60].
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the precedence relationship among CACs during any instant, have been defined in terms

of the ASG. Since the ASG depicts an actual execution sequence and is neither a priori

determinable nor a general description of any implementation of a given model specification,

its usefulness for algorithm construction is limited. However, the information available in

an ASG, i.e. the causal relationships among ACs during an execution of the CS, is also

provided in the ACIG. Specifically, the ASG depicts a time series of instances of subgraphs

of the ACIG.

8.2.1 Utilizing the ACIG as a model of computation

We begin with a formal proof that each DAC and associated cascade of CACs in the

ASG has a corresponding subgraph in the ACIG. For purposes of the theorem, we say that

an ASG is vertex-contracted if, for every cascade of CACs, all vertices representing different

occurrences of the same AC are contracted into a single vertex.

Theorem 8.1 For any model specification M in the CS and any implementationM ′, if N ′

is a subgraph of a vertex-contracted ASG(M ′) induced by a single DAC and all CACs reach-
able from it without passing through another DAC, then N ′ is a subgraph of ACIG(M).

Proof: Let M be a model specification in the CS and M ′ be the implementa-
tion of M on a hypothetical machine. Let G′ be the action sequence
graph of M ′ and G be the action cluster incidence graph of M. For
some DAC, n ∈ G′, let N ′ be the subgraph of G′ induced by n and
all CACs reachable from it without passing through another DAC.
Suppose N ′ is not a subgraph of G.
Case I: V (N ′) �⊆ V (G). Then an AC is executed which does not ap-
pear in G. By definition the ACIG contains all model ACs. Therefore
V (N ′) ⊆ V (G).
Case II: A(N ′) �⊆ A(G). Then ∃ i, j ∈ M ′ � ACi causes ACj but an
arc between ACi and ACj does not exist in G. However, for ACi to
cause ACj an output attribute of ACi must be a control attribute
of ACj . By definition the ACIG contains an arc from ACi to ACj .
Therefore A(N ′) ⊆ A(G).
Case III: The restriction of ψG to A(N ′) does not yield ψN ′ . This is
false trivially.
The evaluation of all cases leads to a contradiction. Therefore the
supposition must be false and N ′ is a subgraph of G. 2

The proof that a dashed arc in the ASG has a correspondence in the ACIG is trivial.

Thus, Theorem 8.1 establishes that the ACIG for a CS contains the requisite information
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to provide action cluster precedence consistent with the semantics defined in the previous

section. In other words,

the ACIG provides a context for control flow in an implementation of the CS.

Whenever an AC is executed, the only ACs potentially enabled as a result, and therefore

the only model conditions which must be subsequently tested, are given by the arcs in the

ACIG. Algorithms suitable to exploit the information provided by the ACIG are presented

below.

8.2.2 Minimal-condition algorithms

Figures 8.3 and 8.4 present algorithms for direct execution of action clusters (DEAC)

simulations that are described as “minimal-condition.” Minimal-condition implies that

given a completely simplified ACIG as a basis, and using the semantics for a CS defined

above, the number of state-based conditions evaluated upon the execution of any given AC

is minimal. Note that the optimality of these algorithms depends, to a large extent, on

their implementation (as briefly discussed below). Two algorithms are defined. For both

algorithms a list, A, of scheduled alarms is maintained as well as a list of state-based action

clusters, C, whose conditions should be tested within the current context of model execution.

The simplified ACIG provides a list of state-based successors for each AC which is used to

maintain C.
Figure 8.3 presents a minimal-condition algorithm for a CS containing mixed ACs.

Efficiently handling mixed action clusters requires a somewhat sophisticated approach. If

σj is a mixed AC and a solid arc exists in the ACIG from AC σi to σj, then let σj ∈ σiS

(the set of state-based successors of AC σi). When a mixed AC is a state-based successor

of an executing AC, only place the mixed AC in C (the list of potentially enabled ACs) if

the AC is in M (i.e. its alarm part has already gone off). When the mixed AC executes,

that AC is removed from both M and C.

Figure 8.4 depicts a minimal-condition algorithm for a CS without mixed ACs. Note

that in both algorithms, executing the termination AC (as either a determined, contingent

or mixed AC) causes an exit from the simulation proper. Note also that an AC may appear

in multiple successor sets. Therefore, an efficient implementation of both algorithms might,

among other things, check for duplicates when inserting into the list C.
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LetA be the ordered set of scheduled alarms.

Let C be the set of state-based and mixed action clusters whose conditions should be tested immediately.

LetM be the set of mixed action clusters whose alarms have “gone off” but whose Boolean condition
has not been met.

Let σiS be the set of state-based successors for action cluster σi (where 1 ≤ i ≤ | ACs | ).

Initially

∀σi, set σiS (from simplified ACIG)
A = C =M = ∅
Perform actions given by the initialization AC and state-based successors

Simulate

while (true) do

clock← time given by FIRST(A)

while (clock = time given by FIRST(A)) do

let σa be the AC corresponding to FIRST(A); remove FIRST(A)
if (condition on σa is WHEN ALARM) or (condition on σa is AFTER ALARM and Boolean part is true)

perform actions of σa
add σaS to C

while (C �= ∅)

remove σc ← FIRST(C)
if condition on σc is true

perform actions of σc
if σc ∈M, remove σc fromM
for each σi ∈ σcS do

if condition on σi is not mixed then add σi to C
if condition on σi is mixed and σi ∈M then add σi to C

endfor

endif

endwhile

else
add σa toM

endif

endwhile

endwhile

Figure 8.3: The Minimal-Condition DEAC Algorithm for a CS with Mixed ACs.
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LetA be the ordered set of scheduled alarms.

Let C be the set of state-based clusters whose conditions should be tested immediately.

Let σiS be the set of state-based successors for action cluster σi (where 1 ≤ i ≤ | ACs | ).

Initially

∀σi, set σiS (from simplified ACIG)

A = C = ∅
Perform actions given by the initialization AC and state-based successors

Simulate

while (true) do

clock← time given by FIRST(A)
while (clock = time given by FIRST(A)) do

let σa be the AC corresponding to FIRST(A); remove FIRST(A)

perform actions of σa
add σaS to C

while (C �= ∅)

remove σc ← FIRST(C)

if condition on σc is true

perform actions of σc
add σcS to C

endif
endwhile

endwhile

endwhile

Figure 8.4: The Minimal-Condition DEAC Algorithm for a CS without Mixed ACs.
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Another factor relating to the execution efficiency of these algorithms is the potential

loss of structure information within an ACIG. For example, if a high-level representation

provides a case, or switch, selector, then the ACIG produced from this description contains

an AC, say ACi with multiple, say n, state-based successors. The semantics provided by

the higher-level representation, permit determination that a singular successor AC exists

whose actions are enabled by the exeution of ACi. However, the ACIG does not reveal

this information. Thus, during execution each condition is tested. If these conditions are

suitably complex, the efficiency of this approach may be substantially inferior to a target

language where an optimizing compiler may provide such mechanisms as lazy evaluation

and short circuiting (see [5]). Conceivably, the ACIG could be annotated to indicate these,

and similar, types of situations. Such details, however, are beyond the scope of this research

effort.

8.3 Provisions for Model Analysis and Diagnosis

Clearly, a major strength of the CS is its facilitation of model analysis and diagnosis, a

capability that distinguishes it from extant simulation languages – both specification and

implementation. Model analysis is considered to include all operations on a model represen-

tation made with the intent to extract information regarding properties or characteristics

of the model representation. Model diagnosis is model analysis with the objective of estab-

lishing the truth of some assertion(s) regarding the model representation or assisting the

modeler in resolving potential questions regarding the representation. Section 8.3.1 exam-

ines the impact of the proposed CS semantics on the extant provisions for model diagnosis.

The remaining sections describe some issues in model analysis raised by this research effort.

8.3.1 Impact of proposed semantics on extant diagnostic techniques

The diagnostic techniques given in Table 5.4 are re-stated here and assessed in terms of

the proposed CS semantics. The techniques are divided into three categories: (1) analytical

techniques, (2) comparative techniques, and (3) informative techniques. The definitions

below are adapted from [163, 164, 194].
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Analytical techniques. Analytical techniques indicate the presence or absence of specific

properties in a model specification. Eight analytical techniques are defined in [163].

• Attribute utilization. An attribute is utilized if the attribute affects the value of
another attribute. Utilization cannot be guaranteed, only estimated. If an attribute
appears in as a control attribute or input attribute in some action cluster, the attribute
is considered utilized (even though the action cluster itself may never be utilized). This
technique is unaffected by the proposed semantics.

• Attribute initialization. All model attributes should be given an initial value before
they are used. If an attribute is an output attribute of the initialization AC then
attribute initialization is guaranteed.6 Otherwise attribute initialization may only
be estimated. However, if the attribute has a zero in-degree in the ACAG, the at-
tribute is guaranteed to be uninitialized. This technique is unaffected by the proposed
semantics.

• Action cluster completeness. Referred to as action cluster determinacy in [194], this
technique determines if the intersection of the output attribute and control attribute
sets for any action cluster is nonempty. The proposed action cluster semantics and
resultant DEAC algorithms obviate this technique.

• Attribute consistency. The usage of an attribute should be consistent with its type.
This technique is unaffected by the proposed semantics.

• Connectedness. When the initialization AC and its arcs are removed from the ACIG,
if the remaining graph has multiple components this typically (although not necessar-
ily) indicates an incomplete model specification. This technique is unaffected by the
proposed semantics.

• Accessibility. An action cluster, ACj , is accessible if there exists a directed path in
the ACIG from the initialization AC to ACj . This technique is unaffected by the
proposed semantics.

• Out-complete. A model specification is out-complete if the only AC in the simplified
ACIG with an out-degree of zero is the termination AC. This technique is unaffected
by the proposed semantics.

• Revision consistency. This technique establishes the degree of consistency in the ACIG
between model revisions. This technique is unaffected by the proposed semantics.

Comparative techniques. Comparative techniques provide relative measures of a model

representation characteristic, i.e. these measurements may only be assigned meaning in the

comparison of model specifications. Three comparative techniques have been proposed.

6If the attribute is also an input attribute of the initialization AC, statement ordering must also be
considered.
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• Attribute cohesion. The degree to which attribute values are mutually influenced.
Powers of the AIM (see Chapter 5) indicate attribute cohesion. This technique is
unaffected by the proposed semantics.

• Action cluster cohesion. The degree to which action clusters are mutually influenced.
Powers of the ACIM (see Chapter 5) indicate action cluster cohesion. This technique
is unaffected by the proposed semantics.

• Complexity. The complexity of a model specification may be assessed in terms of its
elegance as a communicative model (psychological complexity) or perhaps in terms of
its transformational relationship to a programmed model (computational complexity).
The effect of the proposed semantics on a complexity measure depends upon the
measure. Wallace’s control and transformation metric [238], for example, relates only
to the structure of the ACIG and to the classification of attributes, and is unaffected
by the proposed semantics.

Informative techniques. Informative techniques provide measurements of quantifiable

model specification properties. However, these measurements typically demand interpreta-

tion and inference on the part of a modeler or analyst to be effective. Three informative

techniques have been identified.

• Attribute classification. Attributes may be classified as: (1) input, (2) output, or (3)
control. This technique is unaffected by the proposed semantics.

• Precedence structure. An indication of a mandated ordering on the execution of action
clusters for any given instant. The proposed semantics provide explicit rules for
generating precedence structures.

• Decomposition. Typically applied to the ACIG, a model specification may be alter-
natively composed (see Chapter 5). This technique is unaffected by the proposed
semantics.

8.3.2 On multi-valued alarms

Overstreet permits an alarm to be set for multiple values. Ostensibly, multi-valued

alarms provide a substantial amount of flexibility in model description. However, if the

condition on an alarm is an after alarm, the possibility of multiple values may potentially

lead to an ambiguity in the model implementation. Consider the ACIG fragment illustrated

in Figure 8.5. If x becomes 5 between time 10 and 20, then two “instances” of the after

alarm AC occur. If x doesn’t become 5 until time 30, then only one occurrence of the

after alarm AC is produced.
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SET ALARM(arrival, 10)
SET ALARM(arrival, 20)

AFTER ALARM(arrival AND x = 5):

x := 5

Figure 8.5: An Improper Usage of Multi-Valued Alarms.

By simple extension of Overstreet’s arguments involving the inherent limitations of static

analysis on a CS, no technique can be defined to automatically detect this type of misuse of

multi-valued alarms. However, a modeler should be wary of this possibility when utilizing

the after alarm construct.

8.3.3 On time flow mechanism independence

In his 1971 paper, Nance [152] illustrates that, counter to a widely held belief, next-event

time flow is not always computationally superior to fixed-time. He further observes [152, p.

72]:

The concept of a continuum of time flow algorithms seems warranted . . .At
separate ends of the continuum are the fixed time and next-event methods, which
are simply algorithms themselves. For any specific simulation application, the
most efficient algorithm may be anywhere along the continuum with its location
reflecting the degree to which it reflects the characteristics of either pole.

When this position is logically resolved with Nance’s subsequent writings on modeling

methodology, the role of the time flow mechanism becomes that of an implementation

detail – which should be separable from model representation at high levels of description.

In defining the CS, Overstreet enunciates a congruous philosophy [178, p. 79]:

Since system time is a model input attribute, the model contains no description
of how it changes value (except for its initialization). Thus a choice of time
advance mechanism can be based on analysis of the model specification. Either
a fixed or varying time increment could be used, (for that matter the model could
be run in “real time”); the model specification does not dictate the choice.
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Because of the results reported by Nance, the concept of a time flow mechanism-independent

representation is appealing. However, as indicated in the development below, the CS,

while supporting both the next-event and fixed-time mechanisms, does not provide an

independence from their selection.

Consider a very simple version of the Pucks model described in Chapter 6 in which a

single puck is placed on a frictionless table. Assume that an initial position and velocity are

specified and the system is to be simulated for a specific number of collisions after which the

final position of the puck is reported. As illustrated in the development of the Pucks model

in Chapter 6, the description of model behavior is dependent upon a particular view of time

flow. In other words, model behavior may be described along two basic lines (the poles

of Nance’s continuum): (1) schedule the next collision, collide, schedule the next collision,

collide, etc. or (2) travel for a certain period of time, see if a collision occurred, travel some

more, see if a collision occurred, and so on. Figure 8.6 contains two CS specifications for

this model and their respective action cluster incidence graphs. The specification for each

reflects a different view of time flow, one next-event, and the other fixed-time.

Thus, the evidence suggests that the CS does support a variety of time flow mecha-

nisms. However, the CS is not independent of the underlying time flow mechanism; the

manipulation of alarms in the CS directly reflects a perception of time flow. The assertion

is made here, but not proven, that any operational representation (see [8]) is inextricably

bound to a perception, if not a precise description, of the underlying time flow mechanism.

Conceivably, a definitional representation defining a model more in terms of a set of objec-

tives and rules, may provide the true independence from time flow for which Nance clearly

demonstrates the need.

8.4 Summary

In this chapter, issues in model analysis and execution within the CM/CS approach are

investigated. The semantics of the CS are refined to provide support for model execution.

Based on a model of computation provided by the ACIG, an implementation structure

referred to as a direct execution of action clusters (DEAC) simulation is defined, and two

DEAC algorithms are presented. The extant provisions for model analysis and diagnosis in

the CS are evaluated with respect to the refined semantics (and the syntax extensions from
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{Initialization}
initialization:

INPUT(maxCollisions, x, y, vx, vy)

pos := (x, y)
vel := (vx, vy)

numCollisions := 0

SET ALARM(collision, timeToCollision())

{Collision}
WHEN ALARM(collision):

pos := updatePosition()

vel := updateVelocity()

numCollisions := numCollisions + 1

SET ALARM(collision, timeToCollision())

{Termination}
numCollisions = maxCollisions:

STOP

PRINT REPORT

{Initialization}
initialization:

INPUT(maxCollisions, x, y, vx, vy, delta)

pos := (x, y)
vel := (vx, vy)

numCollisions := 0

SET ALARM(update, delta)

{Update}
WHEN ALARM(update):

pos := updatePosition()

SET ALARM(update, delta)

{Check for Collision}
puckPositionVersusBoundaryFnc():

vel := updateVelocity()

numCollisions := numCollisions + 1

{Termination}
numCollisions = maxCollisions:

STOP

PRINT REPORT

(a) Next-Event Specification (b) Fixed-Time Specification

Initialization

Collision

Termination

Initialization

Update

Check

Termination

Figure 8.6: Two Perceptions of Time and State in Specifications for a Simple Pucks Model.
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Chapter 6).

The chapter concludes with an evaluation of the CS as a time-flow-mechanism-independent

representation. We demonstrate that the use of the alarm construct in the CS must reflect

some view of the passage of time. We postulate that this problem exists for any operational

specification language.
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Chapter 9

PARALLELIZING MODEL EXECUTION

For the earliest system of philosophy . . .was like unto one ar-
ticulating with a stammer, inasmuch as it was new as regards
first principles, and a thing the first in its kind.

Aristotle, The Metaphysics

One of the underlying themes of this research is that the preeminent role of decision

support within the context of simulation persists under any particular set of study require-

ments. By extension, the modeling practices that facilitate the development and assessment

of model correctness must be preserved within any modeling approach. The observations of

Nance and Sargent which provide the foundation for the requirements of a next-generation

modeling framework (Chapter 3) adhere to this philosophy. However, the simulation litera-

ture is replete with examples of approaches where recognition of the fundamental nature of

simulation as a decision support tool is missing, or unstated. As discussed in the develop-

ment of the colliding pucks model in Chapter 6, parallel discrete event simulation supplies

several such examples.

In this chapter, the Conical Methodology/Condition Specification (CM/CS) approach

to model development is evaluated in terms of its provisions for incorporating parallelism

into model execution. A characterization of the inherent parallelism available in a CS model

specification is given. This characterization is based on Nance’s delineation of the time and

state relationships in a simulation model. Algorithms suitable to permit the exploitation

of parallelism within the execution of an ACIG-based simulation model are presented. To

preface the development of these algorithms, Section 9.1 contrasts the model development

approach (typically) adopted within parallel discrete event simulation with the philosophy
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that guides this research. For completeness of the presentation, a few basic parallel discrete

event simulation concepts are also reviewed.

9.1 Parallel Discrete Event Simulation: A Case Study

Parallel discrete event simulation (PDES) is usually regarded as the method of executing

a single simulation program on multiple processors.1 Typically, PDES refers to simulation

on a multiprocessor – either MIMD or SIMD (see [224]). However, several PDES techniques

stipulate a strict message passing communication scheme and therefore are applicable to

distributed (network-based) approaches. In this chapter, the primary focus is on PDES

techniques suitable for MIMD architectures. Distinctions between parallel computation

and distributed computation are made where appropriate.

9.1.1 A characterization of sequential simulation

The characterization of discrete event simulation commonly held in PDES is rather

narrow – focusing strictly on the implementation requirements. According to Fujimoto [78,

p. 31], “sequential simulators” typically utilize three data structures: (1) the state variables

that describe the state of the system, (2) an event list containing all pending events, and

(3) a global clock that denotes how far the simulation has progressed.2 Model execution

involves the repeated process of removing the event with minimum timestamp, Emin, from

the event list and modifying state variables, and/or scheduling other events as prescribed

by the event routine corresponding to Emin. The process continues until the condition for

termination is met, or until no unprocessed events remain – in which case the simulation is

not well-defined.

Fujimoto notes that in the traditional sequential execution paradigm, selection of the

next event (on the event list) to be processed, Emin, as the one with the smallest timestamp

1Several alternate views of PDES have been proposed, such as the execution of independent replications
of a single simulation experiment on multiple processors, or parallelization of simulation support routines
such as the event list. However, the problem of applying multiple processors to a single replication of a given
program is viewed as the most general (and difficult) problem.

2In its purest form, the activity scanning world view does not prescribe an event list. The three-phase
and process interaction approaches, however, do include abstractions built upon the event list structure
(see [19]).
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is crucial. Otherwise, if an event, say Ex, is selected such that Ex modifies one or more

state variables used by Emin, the simulated future may affect the simulated past. Fujimoto

refers to errors of this nature as causality errors.

A defining characteristic of PDES approaches is the need to synchronize proces-
sors such that causality in the simulation is preserved.

Nicol and Fujimoto [171] observe that interest in parallel simulation arose first with the

problem of synchronization, and this problem has remained the focus of most research in

PDES for the last 15 years.

The simplest method of processor synchronization is for all processors to perform in

lock-step fashion. These synchronous-time (global clock) approaches, such as the one pro-

posed by Jones [116, 117], are particularly suited for shared-memory multiprocessors and

models in which a large proportion of the model objects are involved in any given event.3

In a typical queueing network simulation, on the other hand, the proportion of model ob-

jects involved in a single event is often quite small. Networks of queues are of fundamental

utility in many areas, such as computer architecture and component design, communica-

tions and manufacturing. Resulting from a combination of their relative importance, and

their general lack of amenability to synchronous-time parallel implementations, an alterna-

tive paradigm has emerged to support the efficient parallel execution of queueing networks.

These asynchronous-time (local clock) approaches fall broadly into two categories: (1) con-

servative, and (2) optimistic. These approaches, or protocols, typically center around a set

of logical processes, one per physical “real-world” process. All interactions between physi-

cal processes are modeled by timestamped event messages sent between the corresponding

logical processes [78]. Each logical process contains a local clock which indicates the pro-

gression, in simulation time, of the logical process. Using this logical process paradigm,

a sufficient condition to guarantee that no causality errors occur in the model is for each

logical process to execute events in nondecreasing timestamp order [78, p. 32].

Unquestionably, the conservative and optimistic asynchronous-time methods have re-

ceived more focus than any other techniques for parallelizing model execution. The con-

sensus among PDES researchers is that if a “general-purpose” parallel discrete event sim-

ulation engine is to be defined, it must be based on an asynchronous-time mechanism. A

3This point is elaborated in Section 9.2.3.
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0.6

0.4
S1

S2

S3

100

Figure 9.1: A Closed Queueing Network with Three Servers. Server S2 sends a message
to server S1 with timestamp 100.

brief description of the conservative view versus the optimistic view follows. For a detailed

treatment of the underlying concepts in PDES, refer to Fujimoto [78]. Another valuable

source is Nicol and Fujimoto [171]; the authors provide a state-of-the-art survey of research

directions in PDES, dividing these directions into 6 categories: (1) protocols, (2) perfor-

mance analysis, (3) time parallelism, (4) hardware support, (5) load balancing, and (6)

dynamic memory management.

9.1.2 Conservative approaches

The first asynchronous-time algorithms for PDES were conservative algorithms [41, 46].

Conservative algorithms are characterized by the fact that no process executes a message

(event) until a guarantee is given that no message will arrive later in the simulation such that

the simulation time (timestamp) of the new message is earlier than the one just executed, i.e.

events occur locally in strictly chronological (nondecreasing timestamp) order. Accordingly,

processes must block until this guarantee can be met.

Figure 9.1 illustrates a closed queueing network with three servers. In the figure, a

message from S2 is being sent to S1 with timestamp 100. If the last message from S3 was

processed by S1 at time 70, and no other information regarding the time of the next message

from S3 is available to S1, under a conservative protocol S1 must block. S1 blocks since the

possibility exists that S3 may send a message with timestamp between 70 and 100. This

blocking requirement can lead to deadlock in the simulation – for example, if S3 has no mes-

sages left to process, and is therefore waiting for a message from S1. Methods for dealing

204



CHAPTER 9. PARALLELIZING MODEL EXECUTION

with deadlock are the focus for much of the research in conservative PDES. Deadlock can be

avoided through the use of null messages [13, 46] or deadlock can be detected and recovered

from [47, 93]. Other efforts aimed at improving the performance of these basic conservative

mechanisms include using barrier-type synchronization techniques [172], precomputation

within the simulation [168], conservative Time Windows [137], and application-specific op-

timizations [85, 92, 192].

Fujimoto observes that an obvious drawback of conservative approaches is their inabil-

ity to fully exploit the parallelism available in a simulation model [78, p. 39]. If event

dependencies are unknown, event execution must often be serialized, even though parallel

execution of the events would not violate simulation causality.

9.1.3 Optimistic approaches

Optimistic algorithms are characterized by the fact that each process executes events as

they arrive and assumes that events arrive in nondecreasing timestamp order. When causal-

ity is violated, optimistic algorithms rollback and execute the events in proper order. Thus,

in Figure 9.1, under an optimistic protocol S1 would process the message from S2 immedi-

ately upon its receipt. If a message subsequently arrives from S3 with timestamp less than

100, S1 must rollback, undue the effects of any out-of-order events, and re-execute the events

in proper order. On the other hand, if the next message from S3 has timestamp larger than

100, no processing time was “wasted” due to unnecessary blocking. Optimistic algorithms

are not subject to deadlock, since no process blocks during execution, but must ensure that

simulation activity progress forward (in some global sense) so that the simulation eventu-

ally terminates. The most widely recognized optimistic protocol is Time Warp [114, 115]

based on the concept of virtual time [113]. Time Warp has received substantial investigative

research, and considerable effort has been expended to understand and improve the perfor-

mance of the protocol (for examples, see [44, 53, 81, 84, 132]). Recently, other optimistic

protocols have been proposed, these include optimistic Time Window approaches [217, 218],

and Space-Time [49].

Some experiments using optimistic methods have yielded impressive speedups (see [79]).

However, state-saving overheads can significantly degrade the performance of an optimistic

method like Time Warp. Hence, both conservative and optimistic protocols have relative
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strengths and weaknesses. No single protocol is ideally suited for all imaginable models

– particularly those whose dynamic behavior is a function of model input. Fujimoto [78]

identifies some criteria for the selection of an implementation algorithm based on system

characteristics. However, these heuristics are insufficient to guarantee algorithm selection

yielding optimal performance, and in some instances utilize properties which are difficult to

quantify. Some other attempts to analyze and quantify the performance bounds of PDES

protocols may be found in [127, 131, 133, 173].

9.1.4 A modeling methodological perspective

In a series of articles published in the Summer 1993 volume of the ORSA Journal on

Computing, several of the leading researchers in parallel discrete event simulation assess

the state of the field. In the lead article, Fujimoto observes that despite many reported

successes in terms of improved performance, PDES has failed to “make a significant impact

in the general simulation community” during the last 15 years of its development [79, p.

228]. Several factors are identified as contributing to this lack of impact, and various

approaches are proposed to make parallel simulation “more accessible to the simulation

community.” Each companion article, [1, 10, 129, 200, 235], acknowledges the acceptance

problem. Fujimoto’s proposals to increase accessibility are critiqued, and several alternatives

are presented.

Abrams [1] suggests that the precipitate cause of the problem is a dichotomy in the

perspectives and priorities of modeling methodologists – the primary purveyors of discrete

event simulation, and parallel programmers – the leaders in parallel discrete event simula-

tion, noting that until these two camps come to terms it is unlikely that PDES will thrive.

Fujimoto [80, p. 247] acknowledges the correctness of this assertion and labels the potential

collaborative attack as a “worthy goal.” Page and Nance [185] elaborate on Abrams’ asser-

tion, and present a view of the parallel discrete event simulation problem from a modeling

methodological perspective. The major themes of that source are summarized briefly here.

9.1.4.1 Observations

If PDES research is contrasted with the modeling methodological perspective outlined in

Chapter 3, differences become evident in two areas: (1) the enunciation of the relationship
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between simulation and decision support, and the guidance provided by the life cycle in this

context, and (2) the focus of the development effort.

Life cycle and decision support. Using [12] as a framework for the discussion, Page [183]

characterizes the directions of PDES research as displaying an incognizance of the funda-

mental nature of simulation as a decision support tool, and the importance of the life cycle

as supportive of simulation in all contexts. The opening lines of the response from Chandy

et al. [50] are illuminating:

Discrete event simulation is a vibrant field. It has many subfields. The software
engineering of simulation is such a subfield, and the “simulation life cycle” is an
example in this subfield. Our paper is focused on a different subfield: parallel
simulation.

These comments present a stark contrast between the philosophies of modeling methodology

that have developed over the past four decades, and a prevalent viewpoint in PDES research.

To suggest that parallel simulation may somehow be divorced from the simulation life

cycle indicates a potentially significant misperception regarding the fundamental nature of

simulation. As Page responds [183, p. 286]:

The simulation model life cycle is most certainly not a topic in any subfield
of discrete event simulation. The simulation model life cycle is the foundation
upon which all of discrete event simulation is placed. Everything that is DES
flows from the life cycle – be it modeling, requirements analysis, executable
representations, verification and validation, or presentation of results to decision
makers – it all emanates from the life cycle.

The primacy of decision support seems to be often overlooked – or at least regarded as

inconsequential, or as a detail that can be “filled in later” – in PDES research. Perhaps

this perception explains why the big payoff of PDES, the heralds of improved performance,

fall largely on deaf ears in the general discrete event simulation community. To evaluate

the benefits of applying parallelism to simulation solely on the basis of typical evaluative

measures for parallel programs, such as speedup in runtime, is specious – at best. Such a

view casts simulation as merely a piece of code which is run to produce the answer. This

view is overly simplistic. To gain “general” acceptance, PDES research must examine the

methods used to attain execution speed explicitly in terms of their relationship to the central

objective of any simulation: arriving at a correct decision.

207



CHAPTER 9. PARALLELIZING MODEL EXECUTION

Whenever Arrival:

if machine status is failed

set repairman status to busy

schedule end repair
else

schedule arrival at next machine

Whenever Failure:
set machine status to failed

Whenever End Repair:

set machine status to operational

set repairman status to idle

schedule next failure for this machine
schedule arrival at next machine

Figure 9.2: A Partial Event Description for the Patrolling Repairman Model.

Moving toward the machine. The majority of PDES research has been conducted

with little regard for the role of the conceptual framework within the model development

process. The following quote (from [225, p. 612]) represents a typical (asynchronous-time)

PDES problem description:

We assume the system being modeled consists of some number of physical pro-
cesses which interact in some manner. The simulation program consists of a
collection of logical processes each modeling a single physical process.

Little distinction between model and program is made, and the paradigms prescribe a

singular perspective: a contrived form of process interaction. This “logical process” view is

characterized as contrived because its definition is motivated more by execution concerns

than by an accurate representation of the physical counterpart. Fujimoto [78, p. 33] notes

that this (logical process) view enables application programmers to partition the simulation

state variables into a set of disjoint states, to ensure that no “simulator event” accesses

more than one state. Such a partitioning permits “minimal” processor synchronization.

Figures 9.2, 9.3 and 9.4 contrast three views of a partial specification (initialization and

termination are omitted) of the patrolling version of the machine interference problem (see

Chapter 6). Figure 9.2 illustrates an event scheduling representation. Figure 9.3 depicts

a process interaction description using the SIMULA concepts activate and passivate, and

Figure 9.4 illustrates a logical process representation of the model. Note the somewhat

convoluted communication structure in Figure 9.4, resulting primarily from the inability of

the repairman to directly examine attributes of a machine (e.g. machine status).
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REPAIRMAN:

while true

wait travel time

if status of current machine is failed

set my status to busy

wait repair time

set status of current machine to operational
activate current machine

set my status to idle

end if

update current machine

end while

MACHINE:

while true

wait until failure

set my status to failed

passivate

end while

Figure 9.3: A Partial Process Description for the Patrolling Repairman Model.

REPAIRMAN:

case message type of:

End Repair::
set my status to idle

send travel msg to self (now)

Begin Repair::

set my status to busy

Travel::
send arrival msg to next machine

end case

MACHINE:

case message type of:

Arrival::
if my status is failed

send begin repair msg to repairman (now)

send end repair msg to self, repairman

else

send travel msg to repairman
End Repair::

set my status to operational

send failure msg to self

Failure::

set my status to failed

end case

Figure 9.4: A Partial Logical Process Description for the Patrolling Repairman Model.
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The evidence is incontrovertible: in typical PDES approaches, the requirements of a

“logical-process-oriented” implementation are allowed to dictate the conceptualization of

the model itself. Clearly, any such requisite perspective is counter to Derrick’s precepts of

conceptual framework selection, and further, this movement “toward the machine” reverses

that which has taken place in both simulation and software engineering over the several

decades. The conceptual restrictions prevalent within PDES, as well as a penchant for

working from a program view, result in model representations (the programs) that are often

contrived and unnatural descriptions of the system being modeled. Execution requirements

force model perturbations unrelated to the (often unstated) study objectives and the natural

system description that exists in the mind of the modeler. Further, the problems of model

verification and validation as well as those of life-cycle support become greatly exacerbated.

Without a clear picture of the objectives and priorities of the general DES community,

however, these problems remain largely unrecognized. For PDES to realize the desired

level of acceptance in the DES community, performance gains must be achievable without

sacrificing software quality objectives. Existing techniques may well provide this capability;

that remains to be demonstrated. Perhaps this demonstration has been delayed by a lack

of agreement as to its need.

9.1.4.2 Recommendations

Chapter 3 presents a philosophy that prescribes the fundamental nature of simulation,

i.e. what simulation is. Also provided by the philosophy are theories of how simulation

should be applied. The philosophy describes a “modeling methodological” view of sim-

ulation: simulation is a model-centered, problem-solving technique that serves first and

foremost as a basis for decision support. This view is by no means exclusive. The prevalent

treatment of DES by the parallel discrete event simulation community would seem to offer

an example of one alternative.

The argument is made here that the view of discrete event simulation presented in

Chapter 3 largely reflects that of the “mainstream” of DES – for better, or for worse.

Therefore, if PDES seeks to make a broader impact within the general DES community,

then the methods of PDES must be resolved, at least to some degree, with the modeling

methodological view. This resolution might be accomplished in myriad ways; no single
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“silver bullet” is evident. Nonetheless, the following list appears to be a logical starting

point:

1. Focus on the model. The move from a program-centered view to a model-centered
view has been documented. Many methodologies and environments for DES pro-
vide programming-language-independent forms for model description. Even those
approaches that advocate a “program-as-model” description provide architectural in-
dependence: the same program is executable on machines with disparate architectures,
as long as each machine has the requisite compiler. Without question, any approach
to discrete event simulation that ties the modeling task directly to the implementing
architecture is destined to meet with failure.

2. Consider the simulation study objectives. Many published efforts in PDES demon-
strate speedup by changing the model. The tradeoff of speed for accuracy is a legit-
imate modeling issue. However, the degree to which model changes are acceptable
is a direct function of the objectives of the study. Rarely are these objectives stipu-
lated, however, and the reader is often left with questions concerning the validity of
the resulting program, and by implication, the viability of the approach. With very
few exceptions, every paper in which a simulation is involved should include a set of
study objectives. Changes to the model made in an effort to exact speedup must then
be addressed in terms of their effect on model validity. Some popular PDES bench-
marks such as colliding pucks (see Chapter 6) and sharks world (see [11, 169, 193])
are unsatisfactory in this regard.

3. Examine the methods in terms of a given simulation approach. As outlined in Chap-
ter 1, discrete event simulation is utilized in a wide variety of contexts. The context
of the model’s usage may influence the suitability of a given approach to obtaining
speedup in execution. For example, if the simulation is used in an evolutionary form
to design or optimize a system, then a posteriori analysis and subsequent modifica-
tion of code to obtain speedup is likely to be less feasible than in a situation where a
model, once constructed, is run many times with few changes.

4. Examine the relationship of speedup to software quality. How does the method used to
exact speedup affect the model in terms of its: maintainability, correctness, reusability,
testability, reliability, portability, adaptability? To what extent are these objectives
enhanced or sacrificed to increase execution speed?

In summary, PDES can – and should – play a significant role in the future of discrete

event simulation. The need for computational efficiency is a persistent characteristic of

simulation software. However, recognition of the larger map formed by the DES research

community is required. Working within recognition of the mainstream of DES research

places PDES in a contributive posture. Continuing the preoccupation with execution effi-

ciency, to the exclusion of constraining and overriding model quality issues, could potentially

relegate PDES findings to the domain of irrelevant results – a loss for all.
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Having examined PDES from a modeling methodological perspective, and having made

recommendations for the mechanisms by which extant PDES research and techniques may

achieve a broader, “mainstream,” acceptance, the remainder of this chapter addresses the

problem of parallelizing the execution of discrete event simulation models from a different

direction: evaluating the capacity of the CM/CS approach in this regard.

9.2 Defining Parallelism

Not all models are created equal. Even if two models are “equivalent” (see Chapter 5),

such that they may be used interchangeably to investigate a given system, the models

may differ in many respects: (1) they may reflect different perspectives, (2) one may be

more maintainable than another in a given setting, (3) one may facilitate analysis in a

superior fashion, or (4) one may be more suitable for parallel execution than another. We

refer to the fourth quality as the inherent parallelism of the model. According to the

philosophy described below, inherent parallelism should be regarded as a function of the

model representation, not the physical system. This important distinction is clarified in the

subsequent discussion.

9.2.1 Informal definitions

PDES protocols, in their usage and evaluation, describe a notion of inherent parallelism.

However, the concept is typically implicit, and vague in its characterization. Explicit for-

mulations of inherent parallelism have appeared in [30, 128, 135] as a basis for critical path

analysis. These efforts are discussed in detail below. A characterization of inherent paral-

lelism, based on the time and state relationships described by Nance [156], is offered here.

Recall from Chapter 2, that an event is a change in an object state that occurs at an instant.

The change in state is comprised of value changes for one or more attributes. Since the

model itself may be viewed as an object, the behavior of the model may be described in

terms of a time-series of “model-level” events.

Definition 9.1 For any model M, the available parallelism may be defined as a function
of the independence of attribute value changes of M at each instant during the execution
of an implementation of M.
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This definition, which is formalized below, states essentially that the parallelism available in

the model is related to the level of independence within a state change (event) during a given

instant in an execution of the model implementation.4 We refer to the parallelism charac-

terized by Definition 9.1 as the inherent event parallelism. The following characterization

is adopted, or implied, by most PDES approaches.

Definition 9.2 For any model, M , and set of model objects, O, the available parallelism
may be defined as a function of the independence of attribute value changes over all o ∈ O
and all instants, during the execution of an implementation of M.

Definition 9.2 is strictly weaker than Definition 9.1, since the parallelism defined by Defi-

nition 9.2 includes the parallelism defined by Definition 9.1.5 Recall from Chapter 2, that

an activity is the state of an object between two successive instants. Definition 9.2 states

that if an event – that either initiates or terminates an activity – for one object is indepen-

dent of an event – again, that either initiates or terminates an activity – for the same or

another object, these events may be processed in parallel. We refer to such parallelism as

the inherent activity parallelism.

9.2.2 Formal definitions

Inherent event parallelism and inherent activity parallelism are formalized as follows.

Let,

M = a model specification
M ′ = an implementation of M
n = the number of instants produced by some execution of M ′

σi = the set of attribute value changes occurring at instant i
ρi = the proportion of value changes from σi that are independent

Then the inherent event parallelism may be estimated by:

ΠE =
1
n

∑
∀i

ρi (9.1)

ΠE is the mean level of state change independence inM ′. The inherent activity parallelism is

simply given by the estimator, ρ∗, which is defined as the proportion of independent value

4The criteria for independence is generally relative to a given model representation and implementation
environment. This notion is further detailed in Section 9.3.

5The term “strictly weaker” is used here in the sense of a weakest precondition, as in [67].
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changes over all objects and instants in M ′. Note that ρi and ρ∗ may be impractical or

impossible to measure directly, and further that the definition of “independence” is relative

to characteristics of both the model representation and the underlying implementation

algorithm (see Section 9.3). Note also that these estimators are based on implementations

of a model, since the number of instants is dictated by a terminating parameter value (in

simulated time or events).

9.2.3 Observations and summary

Three observations regarding Definitions 9.1 and 9.2 are warranted. First, in concep-

tualizing a model, a modeler with no experience in parallel simulation may have some

intuition regarding inherent parallelism. Parallelism is most naturally perceived as it re-

lates to “things happening at the same time” in the model, and the degree to which these

“things” are independent of each other. This intuition is partially captured by Defini-

tion 9.1, since only state changes that occur during the same instant contribute to the

level of parallelism. However, a modeler might not always perceive simultaneous behavior

strictly in terms of events, but might also perceive such behavior over spans of simulated

time. The parallelism provided by Definition 9.2 captures this behavior. But Definition 9.2

also describes parallelism in terms of simultaneous execution of independent state changes

that occur at different instants. Intuition for this type of parallelism might be attainable

only after extensive and sustained exposure to protocols designed to exploit it.

Second, if the level of parallelism given by Definition 9.1 is high, speedup may be achieved

through fairly simple synchronous-time algorithms where the overhead of implementing a

global clock and shared state can be amortized.

Third, we offer the conjecture that, in actual practice, the class of problems for which

the parallelism provided by Definition 9.2 is very high, is small. The reasoning behind this

conjecture is that discrete event simulation is utilized, by definition, when “intermediate

states” are important. Otherwise, continuous or Monte Carlo techniques are suitable. The

importance of the intermediate states is often due to their impact on future model behavior.

Thus, in a discrete event simulation, the model affects itself over time, i.e. events are seldom

temporally independent. When the model is decomposed into objects, these object-level

events may be independent over time. However, looking at this another way, under such
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a partitioning if a large degree of parallelism is available, then the behavior of one or

more model objects rarely, or never, affects the behavior of other objects in the model

during any instant in model execution. In this case, the presence of such objects may be

suspect. Relative to the study objectives, the model might contain superfluous, or perhaps

incomplete, information. In which case the model should be reformulated.

Of course, the demonstrated successes of asynchronous-time PDES techniques for var-

ious queueing network configurations (see [79]) illustrate examples of systems where the

inherent activity parallelism is high and the inherent event parallelism is low. However, as

has been stipulated, exploiting the available parallelism in these cases can require sophis-

ticated formulations of both the protocol and the model. One possible alternative in this

situation is to reformulate the model such that the event parallelism is high, i.e. formulate

the model with a fixed-time increment time flow algorithm. The benefits of this type of

reformulation may be in the provision of a simple and suitably efficient implementation

algorithm. The cost of this reformulation comes in terms of losses in model fidelity and

must, in all cases, be assessed in terms of the model objectives.

Also worthy of note is that, for queueing networks, the inherent event parallelism is

low because the model-level events usually include only one or two model objects, and in

general, simultaneous events are not common. For models that contain highly synchronous

objects, i.e. each model-level event includes state changes for a large proportion of the model

objects, extant PDES protocols may “perform” poorly compared to simpler algorithms.6

For example, consider a military simulation in which one process causes a large explosion at

time t. If a majority of model objects are within the kill-range of this explosion at t, then

model execution must essentially synchronize at t. Copious amount of parallelism may be

available, since each object may be responsible for determining its own damage-level as well

as its own future actions. However, in optimistic PDES protocols, many of these objects

may have to be rolled back – perhaps a considerable distance if the object triggering the

explosion is a “stealth threat” having had few prior interactions with other model objects.

The overhead here, especially in terms of storage, is potentially large. A conservative

algorithm would not incur costs for rollback, all objects would be blocked until t. But these

approaches would also block at every potential time the stealth object could cause such

6Where performance is defined in terms broader than speed of model execution.

215



CHAPTER 9. PARALLELIZING MODEL EXECUTION

an explosion. If these times cannot be adequately predicted (i.e. if no lookahead exists), a

conservative approach may perform poorly. On the other hand, a simple synchronous-time

algorithm may provide near optimal performance for this type of model.

This example is something of a strawman, however. Parallelized warfare simulations

have demonstrated success in terms of speedup, e.g. [85, 86]. The point made here is

that queueing network simulations generally follow a pattern of behavior in which only

a few objects are involved in a given event, and each event schedules only one or two

subsequent events. As a result, a rather complex decomposition into logical processes is

required to parallelize the execution of these models. We might reasonably expect that, for

other classes of systems, parallelism may be achievable without the imposition of such a

restrictive conceptual framework.

9.3 Estimating Parallelism

The definitions for inherent event parallelism and inherent activity parallelism given

above provide little more than intuitive guidance since they are predicated on the unquan-

tified concept of independence. This concept can be more rigorously defined. To do so,

however, requires a specific characterization of several parameters in a parallel model im-

plementation.

In this section, the extant techniques for quantifying simulation model parallelism are

reviewed.

9.3.1 Protocol analysis

Several efforts have sought to define model-independent characterizations of the relative

and expected performance of parallel simulation under a variety of protocols. Felderman

and Kleinrock [69] show that the average performance difference between a synchronous

parallel simulation protocol and an asynchronous optimistic protocol (e.g. Time Warp) is

no more than a factor of O(logP ) on P processors. This result assumes that the “task” times

for each process are exponentially distributed. The improvement when using a distribution

with finite support, e.g. uniform, is reduced to a constant independent of P.

Lin and Lazowska [130] demonstrate the “optimality” of Time Warp under certain as-

sumptions, showing that Time Warp outperforms conservative protocols for every feedfor-
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ward network simulation, and for most feedback networks with poor lookahead. The authors

indicate that the optimality of Time Warp is related to whether or not correct computa-

tions are ever rolled back. In a related effort, Lipton and Mizell [134] provide a model

that identifies conditions under which an optimistic protocol may arbitrarily outperform a

conservative protocol. The authors also use this model to demonstrate that no example to

the contrary exists.

Other efforts examine self-initiating parallel simulations [70, 170] and analysis based

on Markov chains [71]. Each of the above techniques attempt, in some sense, to quantify

the expected performance of a particular protocol irrespective of the characteristics of the

model being executed.

9.3.2 Critical path analysis

According to Lin [128, p. 241], parallel simulation has as its basis the following obser-

vation:

if two events are independent of each other, they may be executed in parallel.

If the model is partitioned into logical processes such that no two logical processes share

any state variables, then two events e and e′, realized in the execution of the two logical

processes, are independent if the resulting model state is identical given either serial event

execution ordering, e, e′ or e′, e.7

Once the simulation is partitioned, execution of the logical processes produces events

subject to two sequential constraints: (1) if two events are scheduled for the same process,

the event with the smaller timestamp must be executed first, and (2) if an event executed at

a process results in the scheduling (or cancellation) of another event at a different process,

then the former must be executed before the latter.

Lin notes that if a model partitioning contains too many processes, the communication

overhead due to the second constraint may be prohibitive. On the other hand, if too few

processes are defined, independent events may be executed sequentially due to the first

constraint.

Based on the twin constraints, Lin defines an event precedence graph for a parallel

simulation. Each vertex represents an event and each edge represents a communication. An

7Such a model partitioning eliminates the possibility of race conditions.
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event execution time is associated with each vertex. A communication delay is associated

with each edge. Since the event precedence graph is acyclic, a maximal weighted path can

be found. This path is called the critical path, and its cost is the minimal time required to

finish the execution of the parallel simulation.

The cost of the graph may be derived as follows.8 Let ge be an event such that event e

is scheduled due to the execution of event ge. If ge is not defined for an event e, then e is

prescheduled. Let pe be an event such that both events e and pe are scheduled for the same

process, and the execution of pe is followed by the execution of e. Let τ(e) be the earliest

time when execution of e starts. Let η(e) be the execution time of e. Let τ(e) be the earliest

time when execution of e completes. If every process is executed by a dedicated processor,

then,

τ(e) = τ(e) + η(e) (9.2)

Let δ(e) be the time to schedule event e. If ge and e are scheduled at different processes,

then δ(e) represents the message-sending delay. Otherwise, Lin assumes δ(e) is zero. This

gives,

τ(e) =




0 if neither ge nor pe exist,

τ(pe) if ge does not exist,

τ(ge) + δ(e) if pe does not exist,

max[τ(pe), τ(ge) + δ(e)] otherwise.

(9.3)

Finally, the cost for the critical path, Tp, and the sequential execution time, Ts are given

by,

Tp = max
∀e

τ(e), and Ts =
∑
∀e

η(e) (9.4)

The optimal parallel simulation time is computed based on Equation (9.3). However,

the equation is only adequate for the case where every process is executed on a dedicated

processor. If the number of processors, P , is less than the number of processes, N , then

Tp is also affected by process assignment and process scheduling. Lin [128] considers only

static process assignment, but investigates three process scheduling policies: (1) all events

at a processor are executed in nondecreasing timestamp order, (2) among the events (of

different processes) available for execution at a processor, the event with the earliest arrival

8Note that in this development, time refers to wall clock (or real) time, as opposed to simulation time.
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time is selected, and (3) among the events available for execution at a processor, the event

with the smallest timestamp is selected.

Several approaches to critical path analysis have been proposed. Lin couples the critical

path analyzer to a generic sequential simulator. Berry and Jefferson [30] instrument a

sequential simulation and take a trace of the events executed. The trace is then transformed

into an event precedence graph. Finally, the cost of the critical path is computed from the

graph. Livny [135] integrates a critical path analyzer with the DISS simulation. No event

trace is required, and graph construction is implicit. Both Berry and Jefferson and Livny

limit the case to P = N. Som et al. [220] describe a method based on analyzing events in a

constrained execution graph. This method does not require a logical process decomposition

of the model, although a corresponding model execution environment is not described.

Finally, some observations due to Lin [128]: (1) A large number of events must be

processed in critical path analysis before a reliable speedup prediction can be obtained.

Transient events should not be considered part of the total if the simulation is intended to

produce steady state results. (2) The number of processors for parallel simulation must be

selected to balance the effects of the twin constraints in order to yield maximal speedup,

and (3) When communication cost is much higher than event execution cost (e.g. 20 : 1),

the amount of speedup may be very low. In this case, adding processors has no benefit.

9.4 Parallel Direct Execution of Action Clusters

Overstreet [178] demonstrates that a CS can be converted into an equivalent specification

reflecting a process view. Conceivably this specification could be adapted to reflect a logical

process view and thereby utilize the extant PDES techniques and protocols. Such integra-

tion with existing approaches requires: (1) selecting an implementation environment, and

(2) describing a suitable translation scheme. Defining a general translation scheme appears

to be difficult and deserving of investigation. Another, perhaps more interesting, question is

that given the ACIG-based model of computation described in Chapter 8, what parallelism

can be identified and can it be effectively exploited? This question is investigated here.

The focus of this development is contrasted with traditional PDES in the following manner.

Within PDES the focus is singular: speed; that is, given a discrete event simulation model

(program) and a particular parallel machine, make the program run as fast as possible.
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Thus, the techniques of PDES center on perturbations of the model (program) such that

processor utilization is maximized. The approach taken in this effort adopts a somewhat

different focus: specifically, can the parallelism available in a given model representation

(the ACIG) be exploited without additional burden being placed on a modeler?

In a DEAC simulation, action clusters define the “level of granularity.” A logical starting

point in a search for parallelism within a DEAC simulation is therefore at the level of

action clusters. The action cluster incidence graph does not naturally partition the state

space of the model; therefore expectations regarding asynchronous algorithms – to exploit

inherent activity parallelism – should perhaps be limited. This issue is addressed in greater

detail subsequently. If the exploitation of inherent event parallelism is considered, intuition

provides that such parallelism exists in the cascade of CACs that accompanies each DAC.

In order to focus the development of concepts, for the remainder of this chapter we assume

that the transition specification is comprised entirely of ACs, i.e. the use of functions is not

considered.

9.4.1 ACIG expansion

Since action clusters provide the level of granularity, and the basis for parallelism, the

requirements of an implementation favor as many ACs as possible. More ACs means more

potential parallelism. The opposite is often true, however, at the specification level. For

a model specification in the CS, fewer ACs generally equates to a more understandable

communicative model.

For example, consider the MVS model in Chapter 6. If a large number of CPUs are

defined, a modeler is likely to describe the model (under the CM/CS approach) using

indexed objects. As a result, a single action cluster for begin-service might be defined as

follows:

for all i : 1 ≤ i ≤ N :: Cpu[i].status = idle and not empty(CpuQ[i]):
Cpu[i].status := busy
set alarm(Cpu[i].end service, exp(Cpu[i].service mean))

If a begin-service may occur during the same instant for multiple CPUs, clearly these actions

are independent and may be processed in parallel. Thus, whenever a model specification

includes quantified ACs such as the one given above, during the creation of the model
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implementation, a translator (perhaps with assistance required from the modeler) may

expand the specification thereby affording an the capability to execute these ACs in parallel

on separate processors. The ACIG corresponding to this specification is referred to as the

expanded ACIG.9 Although the two forms are closely related, an important distinction must

be made: the ACIG is part of a model specification, the expanded ACIG provides a basis

for a model implementation.

9.4.2 A synchronous model for parallel execution

In this section, a pedagogical model for a synchronous parallel execution of an ACIG

on a hypothetical machine is described. The goal of this development is to enhance the

reader’s insight into the nature of the inherent event parallelism within an ACIG.

Let M be a model specification in the CS and let G be a simplified, expanded ACIG for

M. In a manner similar to Petri nets (see Chapter 4) we define a marking on the ACIG as

the distribution of tokens within the graph. Assume the existence of a hypothetical machine

capable of executing an ACIG. Graph execution is governed by the following rules:

• Whenever a token is passed to an AC, the condition is tested. If the condition evaluates
to false, the token is consumed. Otherwise, the actions are executed, a token is created
and passed to each of the state-based successors of the AC, and the token originally
passed to the AC is consumed.

• Whenever the situation develops that no tokens exist in the graph, the earliest sched-
uled alarm (and all those with identical alarm times) is (are) removed from a list of
scheduled alarms, and a token is passed to each of the corresponding AC(s).

Execution begins by passing a token to the initialization AC and ends when the actions of

the termination AC are executed.

If an omniscience is permitted such that the ACIG and its markings are visible during

execution, what we observe is a static graph within which tokens flow sporadically: a token

appears in the initialization AC, is consumed, and tokens flow to its state-based successors.

Tokens continue to flow through the graph and are consumed and others created to take

their place until the last token reaches a “dead end” on its path from the initialization AC.

This occurs when the condition on the AC failed or no state-based path out of the AC

9The concept of ACIG expansion appears closely related to the common multiprocessor technique of
“loop unrolling” (see [224, Chap. 7]).
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exists. Then a brief pause – discernible only to the truly omniscient – and a token appears

at a DAC somewhere in the graph. Then, another cascade of tokens flowing, and so on.

From this vantage, the parallelism is visible. Namely,

the available parallelism at any point in (real) time is defined by the number of
tokens in existence in the graph at that time.

Of course, this model describes an ideal situation that cannot exist in actual practice. In

the following sections, some limitations on this ideal are quantified.

9.4.3 Specification ambiguity

In Chapter 5, Overstreet’s characterization of specification ambiguity is given. Over-

street defines two types of ambiguity: state ambiguity and time ambiguity. State ambiguity

relates to a dependency among simultaneously enabled contingent action clusters, and time

ambiguity relates to a dependency among simultaneously enabled determined action clus-

ters. He further shows that detecting either state ambiguity or time ambiguity cannot be

accomplished automatically for an arbitrary model specification.

To provide consistency with the DEAC model of computation defined in Chapter 8,

and to establish a basis for denoting that the parallel execution of two action clusters

is well-defined, Overstreet’s definitions for ambiguity are modified slightly here. First, a

characterization of dependency among two model actions (in a CS) must be given.

Definition 9.3 Two model actions a and b are said to be write/write conflicting if the
intersection of their output attribute sets is non-empty.

Definition 9.4 Two model actions a and b are said to be read/write conflicting if the
intersection of the input and control attribute sets of one and the output attribute set of
the other is non-empty.

Definition 9.5 Two model actions a and b are said to be dependent if they are write/write
or read/write conflicting. Otherwise a and b are independent.

The characterization of dependency given by Definition 9.5 is stronger than the definition

typically used in PDES.10 The PDES requirement of a totally partitioned state space makes

10As presented in Section 9.3.2, two events are independent if any serial ordering of their execution yields
the same state.
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Event 1 Event 2

1 2

3 4 5

6 7

8

Figure 9.5: A Partial ACIG Showing Two Events with Common Actions.

considerations for processor contention unnecessary. However, in a parallel execution based

on an ACIG, the possibility exists for contention on model attributes.

For the following definitions, the relationship between action clusters in an ACIG and

action clusters corresponding to an event must be provided. At first glance it may appear

that to delineate the events in an ACIG, merely removing the dashed arcs is sufficient.

The remaining connected components should contain the events. This approach is almost

correct, but must be adapted slightly. Consider the ACIG fragment given in Figure 9.5.

The figure illustrates two events which share CACs. This type of specification often results

whenever a series of common actions occurs over several model events. For example, a

group of actions representing get-proper-signatures may occur both for the event that an

order is placed for spare parts, and the the event that a seaman is transferred.

To identify events in an (simplified) ACIG, a collection of graphs is constructed each

of which consists of a single DAC and all CACs reachable from it without passing through

another DAC. Algorithms for this are straightforward and may be found in [178, 194].

Definition 9.6 Let M be a model specification in the CS and let G = ACIG(M). Let
E be the graph induced from G by a single DAC and all CACs reachable from it without
passing through another DAC. We call E an event-cluster.

Using these event-clusters as a basis, the ambiguity problem reduces to an examination of

conflicts within an event-cluster and among pairs of event-clusters.
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Definition 9.7 Let M be a model specification in the CS, and let a and b be dependent
model actions. If a and b are in distinct CACs of the same event-cluster, E, and if no
ordering information is available relative to a and b, then M is said to be state ambiguous.

Definition 9.8 Let M be a model specification in the CS, and let a and b be dependent
model actions. If a and b are in ACs of distinct event-clusters, E1 and E2, and if no ordering
information is available relative to a and b, then M is said to be time ambiguous.

Essentially, ambiguity can arise from two sources. First, ambiguity may be the result of

a poorly defined event. That is, within the cascade of CACs that accompanies a DAC

some dependency exists on attributes of two ACs whose respective order of execution is not

prescribed. This is state ambiguity as given by Definition 9.7. Time ambiguity, as given by

Definition 9.8, arises as the result of simultaneous (interfering) events.

The fundamental limitation confronting the automated detection of ambiguity is an

inability to statically determine read/write and write/write conflicts. Still, an ACIG may

posses certain properties which tend to indicate the presence of, or at least the possibility

for, ambiguity. We now describe a necessary condition for state ambiguity in a CS. The

Theorem clarifies the nature of the “ordering information” referred to in Definition 9.7. Let,

M = a CS model specification comprised of action clusters (AC1, . . . , ACn)
O(ACj) = the set of output attributes for ACj
I(ACj) = the set of input and control attributes for ACj
WW ≡ ∃ i, j � O(ACi) ∩O(ACj) �= ∅
RW ≡ ∃ i, j � (O(ACi) ∩ I(ACj) �= ∅) ∨ (I(ACi) ∩O(ACj) �= ∅)
G = simplified, expanded ACIG
E = the set of event-clusters in G

Theorem 9.1 Let M be a model specification in the CS. If M is state ambiguous then
∃ e ∈ E � for the DAC d ∈ e, and two CACs i, j ∈ e, RW or WW holds for i, j and either
no directed path between i and j exists or multiple paths from d to either i or j exist.

Proof: Let M be a model specification in the CS such that M is state
ambiguous. Then by definition, there exists e ∈ E and CACs i, j ∈
e � RW or WW holds.
Let d ∈ e be the DAC. By the construction of e, ∀ x ∈ e ∃ a directed
path from d to x. Let Pi denote the path from d to i. Let pj denote
the path from d to j.

Suppose pi is the unique path in e from d to i, and pj is the unique
path in e from d to j. Further, suppose that a directed path, p∗,
between i and j exists. Without loss of generality, suppose p∗ is a
path from i to j.
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Figure 9.6: A Partial ACIG Showing Multiple Paths Between a DAC and CAC.

Let M ′ be an implementation of M under the DEAC algorithm. Let
t be any instant of M ′ during which i and j occur. Then i and j
must be coincident in time with d. Further, d must precede both i
and j. Therefore, during instant t execution begins at d and follows
the path pi to i and pj to j. Since pj is the unique path from d to j, p∗
must lie on pj. Otherwise, the concatenation of paths pi and p∗ form
a directed path from d to j distinct from pj. Therefore, execution
must begin with d, follow pi to i and then follow p∗ to j.
This contradicts the fact that M is state ambiguous since an explicit
ordering between i and j exists. Therefore the supposition must be
false and either multiple paths exist in e from d to one of i or j, or
no directed path exits in e between i and j. 2

The proof of Theorem 9.1 is complicated by the fact that the members of E are not

required to be rooted trees, i.e. cycles in the underlying graph are possible. For example,

an event-cluster of the form illustrated in Figure 9.6 is permitted. This figure illustrates a

significant ambiguity problem with the ACIG itself. Specifically, when an AC has multiple

incoming arcs, e.g. AC4, the graph itself does not contain sufficient information to indicate

the conditions under which that AC may actually be enabled during an execution of the CS.

Is the information passed along one arc sufficient to enable the execution of the AC or must

information arrive at the AC from all incoming arcs? In the case of Figure 9.6, if either of

AC1 or AC3 can enable the execution of AC4, then the specification is potentially ambiguous

– if AC2 or AC3 conflicts with AC4. Otherwise, if both AC1 and AC3 must execute prior

to the execution of AC4 for any given instant, the specification is not ambiguous.

A necessary condition for time ambiguity is trivial, and little can be gleaned from the
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graph structure. Essentially, if a CS is time ambiguous, some pair of event-clusters contains

conflicting actions. To resolve time ambiguity, a model analyzer must scan pairs of event-

clusters for conflicts – not guaranteed a priori determinable – and rely on the modeler’s

understanding to determine if the two events can occur during the same instant.

9.4.4 Critical path analysis for PDEAC simulation

Characterizations of inherent parallelism are formulated in Section 9.2. The position is

advanced that inherent parallelism should be regarded as a function of the model represen-

tation and not the underlying system. This point is worthy of elaboration. To be precise,

the available parallelism in a model is relative to the degree of dependence among model

components – for some given definition of dependence and some level of component, e.g.

event, activity, action. The dependence might reflect a dependence in the system, or it can

be an artifact of the model itself. Since the number of possible models for any given system

and set of objectives is likely to be very large, demonstrating that some dependency in the

system must be reflected in any model of that system is typically impractical. Hence, the

adoption of the position that inherent parallelism should be considered a property of the

model representation.

In Section 9.4.2 a model of the synchronous parallel execution of an ACIG is described.

In this section, a technique to establish the optimal parallel simulation time based on the

synchronous model of execution is defined. Such an assessment is desirable in order to

evaluate “how well” an actual PDEAC algorithm is performing, not relative to an artificial

constraint such as the maximum utilization of available processors, but relative to the

natural limitation of the available parallelism in a given model representation.

Lin [128] shows that a critical path analyzer can be incorporated into a sequential sim-

ulator. While this approach is less than ideal in many PDES settings – it requires the

development of both a sequential and a parallel model (program) – such an approach is

perfectly suited for the CM/CS development described by this research since the same

model specification may be used as the basis for both the sequential and the parallel imple-

mentation.
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9.4.4.1 The synchronous critical path

Using the synchronous model for execution described in Section 9.4.2, the critical path

in a direct execution of action clusters simulation may be defined as follows.11 Based on

Lin’s development, let,

a = an action cluster
pa = the action cluster that precedes a (from ACIG) if a is a CAC
αa = the set of ACs executed during the instant immediately

preceding the instant during which a executes
τ(a) = the earliest time when execution of a may begin
ζ(a) = the time required to test the condition of a
η(a) = the time required to perform the actions of a
τ(a) = the earliest time when execution of a may complete

If every AC is executed by a dedicated processor, then,

τ(a) = τ(a) + θ(a) (9.5)

Where θ(a) = ζ(a) + η(a) if the condition on a is true, and θ(a) = ζ(a) otherwise. The

earliest time when the execution of a may begin is given by,

τ(a) =




0 if a is the initialization AC,

τ(pa) if pa exists,

max∀x∈αa τ(x) otherwise.

(9.6)

Finally, the cost for the critical path, Tp, and the sequential execution time, Ts are,

Tp = τ(t), and Ts =
∑
∀a

η(a) (9.7)

where t denotes the termination AC. The optimal parallel simulation time of any syn-

chronous PDEAC algorithm for a given model is Tp, with a best possible speedup of Ts
Tp
.

9.4.4.2 The critical path algorithm

An algorithm to compute the (synchronous) critical path of a DEAC simulation is given

in Figure 9.7. The algorithm is simply an augmentation of the standard DEAC algorithm

(Figure 8.4). Initially, τ(pa) is set to zero for all CACs, a, in the CS. Whenever an AC is

11Recall from Chapter 8 that execution of an AC is defined as the evaluation of the condition on the AC,
followed by activation of the AC – performing the specified actions – if the condition evaluates to true.
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LetA be the ordered set of scheduled alarms.

Let C be the set of state-based clusters whose conditions should be tested immediately.
Let σiS be the set of state-based successors for action cluster σi (where 1 ≤ i ≤ | ACs | ).

Initially

1 ∀σi, set σiS (from simplified ACIG);A = C = ∅; ∀ CACs j, τ(pj)← 0
2 perform actions of initialization AC, σI
3 τ(σI)← η(σI); max← τ(σI); ∀ j ∈ σIS , τ(pj)← τ(σI)
4 add σIS to C

5 while (C �= ∅)

6 remove σa ← FIRST(C)
7 τ(σa) ← τ(pσa) + ζ(σa)
8 if condition on σa is true

9 perform actions of σa
10 τ(σa)← τ(σa) + η(σa); ∀ j ∈ σaS , τ(pj) ← τ(σa)
11 add σaS to C
12 endif

13 if τ(σa) > max, max← τ(σa)
14 endwhile

Simulate

15 while (true) do

16 clock← time given by FIRST(A)

17 α←max

18 while (clock = time given by FIRST(A)) do

19 remove FIRST(A); let σa be the AC corresponding to FIRST(A)
20 perform actions of σa
21 τ(σa)← α + η(σa); emax← τ(σa); ∀ j ∈ σaS , τ(pj)← τ(σa); add σaS to C
22 while (C �= ∅)

23 remove σa ← FIRST(C)

24 τ(σa)← τ(pσa) + ζ(σa)
25 if condition on σa is true

26 perform actions of σa
27 τ(σa)← τ(σa) + η(σa); ∀ j ∈ σaS , τ(pj)← τ(σa)
28 add σaS to C
29 endif
30 if τ(σa) > emax, emax← τ(σa)
31 endwhile

32 if emax > max, max← emax

33 endwhile

34 endwhile

Figure 9.7: The Critical Path Algorithm for a DEAC Simulation.
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invoked: (1) its completion time is recorded as the completion time of its predecessor plus

the execution time of the AC itself,12 and (2) if the actions given by a are taken, for all ACs

i in the successor set of a, the completion time of a is recorded as the completion time of

the predecessor of i. In the simulation proper (lines 15 - 34), three variables are utilized to

track the critical path: max contains the largest value of τ for each instant, emax contains

the largest value of τ for each event-cluster, and α contains the largest value of τ for the

previous instant. We now formally establish the correctness of the critical path algorithm.

Lemma 9.1 In the critical path algorithm, whenever the clock is updated (line 16), max
contains the maximum value of τ(a) for all ACs a executed during the previous instant.

Proof: Execution of a model under the DEAC algorithm may be viewed as
a sequence of instants, I1, I2, . . . Im. We proceed by induction on
j : 1 ≤ j ≤ m.

Basis. j = 1. Under the CM, initialization is not considered an in-
stant. Model execution begins with the first update to the system
clock (line 16). Therefore, in the critical path algorithm, the begin-
ning of the jth instant is defined by the jth execution of line 16.
Consider j = 1. The body of the simulation proper (the while loop of
line 15) has not executed. Therefore the value of max is determined
in the initially section of the algorithm (lines 1 - 14). We see that
max is first assigned to the earliest possible completion time of the
initialization AC at line 3. If initialization has no state-based suc-
cessors, the assignment to max is correct and the hypothesis holds.
If initialization has state-based successors, the loop of line 5 is ex-
ecuted. In all cases (i.e. whether or not the condition on the AC
evaluates to true) max is updated correctly (line 13). Therefore the
hypothesis holds for j = 1.
Inductive step. Assume that the hypothesis holds for j ≤ n for some
n ≥ 1. We show that it also holds for j = n+ 1.
The jth instant begins with the jth execution of line 16. Consider
the j − 1st execution of line 16. By the inductive hypothesis, max
contains the maximum value of τ(a) for all ACs a executed during
the preceding (j−2nd) instant (or initialization, if the j−2nd instant
does not exist). This value is placed in α by the j− 1st execution of
line 17.
The completion time of the DAC defining the j − 1st instant is cal-
culated at line 21 as τ(σa) ← α + η(σa) and this value is stored in
the variable emax.

12The completion time of the predecessor of AC i is given by τ(pi) if i is a CAC, or by α if i is a DAC.
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If the DAC has no state-based successors, the while loop given by
line 22 is not iterated. Otherwise emax is updated for each CAC,
if necessary, such that emax contains the largest value of τ for that
event-cluster (line 30).
In either case, max is assigned the final value of emax at line 32.
If no other DAC occurs during instant j − 1, then the while loop
given by line 18 terminates and the hypothesis holds.
If another DAC occurs during instant j−1, then the earliest comple-
tion time of that DAC is calculated correctly using α (line 21) and
this value is assigned to emax. As before, the while loop given by
line 22 is iterated for any CACs as necessary and emax is correctly
updated at line 30.
After all ACs defining the event-cluster have executed, max is up-
dated, if necessary, at line 32. If another DAC occurs during instant
j − 1, this process repeats. Otherwise the while loop terminates and
the hypothesis holds. 2

Lemma 9.2 In the critical path algorithm, following the execution of an AC, a, τ(a) con-
tains the earliest possible finishing time of a.

Proof: Execution of a model under the DEAC algorithm may be viewed as
a sequence of ACs, AC1, AC2, . . .ACm. We proceed by induction on
j : 1 ≤ j ≤ m.

Basis. j = 1. The first AC executed in the critical path algorithm is
the initialization AC, i. Immediately following the execution of i, τ(i)
is computed as τ(i) ← η(i) (line 3). If execution begins at time 0,
then i may complete no earlier than η(i). Therefore the hypothesis
holds for j = 1.
Inductive step. Assume that the hypothesis holds for j ≤ n for some
n ≥ 1. We show that it also holds for j = n+ 1.
Case I. j is a DAC. Immediately following the execution of j, τ(j) is
computed as τ(j) ← α + η(j) (line 21). By Lemma 9.1, α contains
the maximum value of τ(a) for any AC a executed during the pre-
ceding instant. Therefore τ(j) is assigned the correct value and the
hypothesis holds.
Case II. j is a CAC. Immediately prior to the evaluation of the
condition on j, τ(j) is assigned the value of τ (pj)+ζ(j) (lines 7, 24).
Let l be the index of pj . l ≤ n. Therefore, by the inductive hypothesis,
τ(pj) is the earliest possible finishing time for pj. So τ(j) contains the
earliest possible completion time for the evaluation of the condition
on j and if the condition evaluates to false, the hypothesis holds.
If the condition on j evaluates to true, τ(j) is incremented by η(j)
(lines 10, 27). In this case, τ(j) contains the earliest possible com-
pletion time for the evaluation and activation of j, and therefore the
hypothesis holds. 2
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Theorem 9.2 If the critical path algorithm terminates, τ(termination) contains the cost
of the critical path.

Proof: Lemma 9.2 establishes that following the execution of any AC a, τ(a)
contains the earliest possible finishing time for AC a.

Therefore if the termination AC, t, appears in the sequence of ACs
produced by an execution of the critical path algorithm, τ(t) contains
the earliest possible finishing time of the termination AC. This value
defines the earliest possible completion time for the model, which is
defined to be the cost of the critical path. 2

Note that τ(termination) may not be equal to max τ(a), for all ACs a in the execution

sequence, since some ACs may be coincident with termination such that the execution time

of one or more of these ACs is greater than the execution time of the termination AC.

However, the semantics of a DEAC simulation are such that termination during an instant

supersedes any attribute value changes that occur during that instant. Therefore, in a

typical model, if n CACs, one of which is the termination AC, are coincident with a DAC,

d, then a directed path from each of the remaining n−1 CACs to the termination AC exists

in the ACIG. In this case, and in the case where termination is a DAC, τ(termination) =

max τ(a) for all ACs a in the execution sequence.

9.4.5 PDEAC algorithm

In this section, an algorithm for a parallel direct execution of action clusters (PDEAC)

simulation is described. The algorithm reflects the synchronous model of computation

described in Section 9.4.2. Recall that the model of computation maintains the AC as the

element of interest. Thus, the algorithm described here equates AC and process. In an ideal

situation, each AC would be executed on a dedicated processor. This situation is assumed

in the critical path calculations (Section 9.4.4.2). Note that in such a configuration, a

maximum utilization of available processors would not be achieved. But such is not the aim

of this approach. The goal here is that a model implementation produce an execution time

as close as possible to that of the critical path.

For a typical model, the number of ACs is probably much greater than the number of

available processors. As a result, processor mapping and load balancing become issues of

concern if the critical path time is to be approached. Several methods for dealing with these
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while true do

passivate

if condition on AC is true
perform actions

activate state-based successors

end while

Figure 9.8: An AC Process in the PDEAC Algorithm.

issues are evident:

• A static assignment of ACs to processors. This approach incurs the least overhead
relative to the underlying computation. Static analysis methods such as the principal
components and factor analysis techniques suggested by [26, 27, 145] could be adapted
to map ACs to processors such that the likelihood that any two ACs on the same
processor could be simultaneously eligible for execution is minimized. However, the
limitations of such static analysis follow from Overstreet’s Turing evaluation of the
CS [178, Ch. 8].

• An assignment of ACs to processors with migration under dynamic load balancing.
The limitations of static process mapping have been noted within PDES, and dynamic
techniques are currently the subject of intensive research effort (see [171]). As these
techniques mature, they should be readily adaptable within the CM/CS approach.

• Dynamic process scheduling. A central (or perhaps distributed) process scheduler
could be utilized such that during clock update the scheduler assigns ACs to proces-
sors. The list of ACs eligible for execution during an instant is derivable from the
state of the alarm list and from the event-clusters as given by the ACIG.

In the PDEAC algorithm, the behavior of an AC may be described as given by Figure 9.8.

The figure presents logic suitable for both CACs and DACs if the condition on a DAC is

defined as a tautology. Upon activation, an AC evaluates its condition. If the condition is

true, the actions given by the AC are performed and the state-based successors of the AC

are activated. Initialization and time flow within the algorithm are governed by a manager

process as depicted in Figure 9.9.

The manager activates the initialization AC and then enters the simulation proper. After

all ACs during an instant (or initialization) have finished executing, the manager updates

the clock based on the alarm list, and activates the DAC(s) whose alarm time(s) is (are)

equal to the current clock value.
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activate the initialization AC

while true do

when no ACs can execute
update clock

activate DAC(s) with current clock

end while

Figure 9.9: The Manager Process in the PDEAC Algorithm.

The primary technical issue to resolve in this algorithm is the detection of when the

clock may be safely updated. In the model of computation described in Section 9.4.2, when

the last AC for a given instant consumes its token, the DAC(s) defining the next instant are

“magically” (via omniscience) passed tokens. Implementing this exchange, however, requires

global knowledge in a distributed environment – an historically challenging problem.

A simple solution is for each AC to send the list of ACs it activates to the manager,

and for each AC to notify the manager upon its own completion. Such an approach may

likely produce a bottleneck within the computation. Alternatives may be to distribute the

manager process itself, or exploit the facilities of a given architecture or thread package.

We leave these important details for future research.

9.4.6 Unresolved issues

The efforts of this chapter represent the first small steps toward effective mechanisms

for the parallel execution of simulation models within a CM/CS development framework.

The goal of this chapter is to establish the definitional and methodological basis which must

underly any execution environment. The concept of inherent parallelism and its relationship

to an action-cluster-based simulation is crucial in this regard, and is established here. Fur-

ther, an algorithm with which to estimate the inherent parallelism in a CS representation

is defined and its correctness formally established.

These efforts make a significant contribution to the theoretical basis for exploiting par-

allelism within the CM/CS framework, but much work remains to be completed in the

practical application of the theory. Perhaps the best way to proceed from here is to es-

tablish an experimental environment within which the practical ideas and methods from
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PDES research may be applied and resolved with the context and theories of the CM/CS

approach. To this end, several issues of substance need to be addressed:

• Contention on the alarm list. The PDEAC approach does not partition the state
space among the available processors. Therefore contention on shared variables must
be explicitly handled. However, given a CS model representation that contains no
state or time ambiguities, the only contention caused by actions of ACs executing in
parallel occurs at the alarm list. To prevent the scheduling of alarms from becoming
a bottleneck, mechanisms exploiting the “event horizon” concept may prove useful
(see [221, 222]).

• Action-level parallelism. The efforts described here have only considered parallelism
at the level of the action cluster. Each action cluster is regarded as a small sequential
algorithm. The actions within an AC may exhibit a degree of independence and may
permit the definition, and exploitation, of “finer grains” of parallelism.

• Handling functions. In the development of Chapters 8 and 9, a CS is assumed to be
comprised solely of ACs. Allowing functions to be utilized in the specification of model
behavior leads to many questions regarding analyzability and also implementability.
One possible solution is to define techniques by which functions may be translated
into ACs.

• Asynchronous execution. The models and algorithms described in this chapter are syn-
chronous in nature – dealing with inherent event parallelism as defined in Section 9.2.1.
Adapting extant asynchronous techniques from PDES, e.g. optimism, for use within
the CM/CS approach merits investigation. Such efforts, however, require reconciling
the ACIG representation with the requirements of a partitioned state space.

Clearly, the CM/CS approach requires much further investigation in this area. Just as clear,

hopefully, is that the CM/CS approach has much offer.

9.5 Summary

The execution of discrete event simulation programs using multiple processors is inves-

tigated in this chapter. Parallel discrete event simulation is evaluated from the modeling

methodological perspective identified in Chapter 3. Differences are noted and recommenda-

tions made to reconcile these two disparate views. The capabilities of the CM/CS approach

relative to parallel execution are also investigated. The concept of inherent parallelism is

described. Inherent parallelism is a function of a given model representation and estab-

lishes a bound on the expectations for speedup resulting from the application of multiple

processors to an implementation of the model.
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A synchronous model of execution is defined for the CS, and a parallel direct execution

of action clusters (PDEAC) algorithm – based on this model – is given. A critical path algo-

rithm, also based on the synchronous model, is defined as an augmentation of the standard

DEAC algorighm (see Chapter 8) such that inherent parallelism is readily quantifiable.

The concepts of state ambiguity and time ambiguity in a CS are refined, and a necessary

condition for state ambiguity is identified.
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Chapter 10

CONCLUSIONS

“Oh, now, don’t underestimate the abacus,” said Reg. “In
skilled hands it’s a very sophisticated calculating device, fur-
thermore it requires no power, can be made with any mate-
rials you have to hand, and never goes bing in the middle of
an important piece of work.”

Douglas Adams, Dirk Gently’s Holistic Detective Agency

The proposition underlying this research is a basic one: discrete event simulation model

development must be guided by recognition of the fundamental role of decision support and

its relationship to model correctness. Motivating this effort is an observation that technol-

ogy, and not the principles of decision support, is exerting major influences on the course

of simulation research in many areas – parallel discrete event simulation and distributed

interactive simulation being two examples.

In Chapter 1, a set of objectives for this research is identified. The most basic objective

is described as seeking an answer to a central question of discrete event simulation modeling

methodology: what is the nature of the ideal framework for simulation model development

where the models may be used for a wide variety of purposes, and implemented on varying

architectures? Such an ambitious objective cannot be realistically achieved within the scope

of a Ph.D. dissertation. Still, its formulation is important because the objective represents

a target toward which the research described here must move. The map within which

the tasks comprising the research effort are charted is provided by a more focused set of

objectives:

1. Identify an extensible framework for model development which permits the integration
of emerging technologies and approaches, and demonstrate its feasibility using an
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existing methodology and representation form(s).

2. Recognize a potential problem with the focus of parallel discrete event simulation
research, and demonstrate how the framework described above may be utilized to cost-
effectively incorporate parallel execution within the general discrete event simulation
paradigm.

An evaluation of this work with respect to the research objectives appears in Section 10.2.

Prefacing the evaluation is the summary of results and identification of research contribu-

tions presented in Section 10.1. Finally, in Section 10.3, some directions for future research

are described.

10.1 Summary

The most tangible contributions of this research result from developments with the Con-

dition Specification. This work represents the most intensive investigation of the language

since its development in 1982. Research contributions are made in many areas. However,

several contributions are solely in terms of the global objective – an objective not attainable

within the scope of this effort – and are therefore resistant to conclusive evaluation. In the

following sections, the research is summarized, and contributions noted, by chapter.

10.1.1 Discrete event simulation terminology

The terminological basis for this research is outlined in Chapter 2. Discrete event

simulation is distinguished from other types of simulation, and noted to be at the focus

of this effort. Definitions are provided for the ubiquitous terms system and model, and

Nance’s [156] characterization of the time and state relationships in a simulation model is

reviewed.

10.1.2 A philosophy of model development

Chapter 3 outlines a philosophy of simulation model development characterized as rep-

resentative of the “modeling methodological view” of discrete event simulation. The view

holds that the primary function of discrete event simulation involves decision support. The

presentation covers a broad range of topics including: (1) a delineation of the relationship

among life cycle, paradigm, methodology, method and task; (2) a review of the life-cycle
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model for a simulation study proposed by Balci and Nance; (3) a discussion of some im-

portant issues in model representation; and (4) a brief description of the simulation model

development environment (SMDE) project. The research contributions from Chapter 3 are

the following:

• Requirements for a next-generation modeling framework. In a 1977 report, Nance [153]
identifies six criteria for a simulation model specification and documentation language.
Sargent [205], in a 1992 conference paper, offers fourteen requirements for a modeling
paradigm. These two sets of criteria are reconciled to produce a list of ten requirements
for a next-generation modeling framework (see Table 3.1):

1. Encourages and facilitates the production of model and study documentation,
particularly with regard to definitions, assumptions and objectives.

2. Permits model description to range from very high to very low level.
3. Permits model fidelity to range from very high to very low level.
4. Conceptual framework is unobtrusive, and/or support is provided for multiple

conceptual frameworks.
5. Structures model development. Facilitates management of model description and

fidelity levels and choice of conceptual framework.
6. Exhibits broad applicability.
7. Model representation is independent of implementing language and architecture.
8. Encourages automation and defines environment support.
9. Support provided for broad array of model verification and validation techniques.

10. Facilitates component management and experiment design.

These requirements serve as the evaluative basis for the survey in Chapter 4.

• An abstraction based on a hierarchy of representations. The model development
paradigm utilized within the SMDE is abstracted to accommodate multiple imple-
mentations as illustrated in Figure 3.4. The abstraction identifies three levels of
model representation:

1. Modeler-generated specifications. These representational forms permit a modeler
to describe system definitions, assumptions and the set of objectives for a given
study, as well as the model behavior in a manner suitable to meet the objectives.
While a canonical form is implied by the figure, the nature of this form has not
been defined.

2. Transformed Specifications. Adhering to the principle of successive refinement,
automated and semi-automated transformations are defined to various forms that
enable analysis and translation to implementations meeting a specified criteria.

3. Implementations. The lowest level of the transformed specifications are the
implementations. These executable representations satisfy the particular con-
straints of a given simulation study.
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The hierarchy may be envisaged as being composed of a set of cooperative and con-
gruent narrow-spectrum languages, or as a single wide-spectrum language. In either
approach, the representation should be the focal point, and the subject of explicit
methodological support.

10.1.3 Formal approaches to discrete event simulation

In Chapter 4, a survey of formal approaches to discrete event simulation modeling is

presented. The research contributions from Chapter 4 are the following:

• Survey and evaluation of formalisms. Eight categories of formal methods are identified
and surveyed. Each category is reviewed in terms of its underlying concepts, historical
development, and directions of current and future research. The categories surveyed
are: (1) Calculus of Change, (2) systems theoretic approaches (DEVS, System Entity
Structure), (3) activity cycle diagrams, (4) event-oriented graphical techniques (event
graphs, simulation graphs), (5) Petri nets, (6) logic-based approaches, (7) control flow
graphs, and (8) generalized semi-Markov processes. The formalisms are evaluated with
respect to the requirements for a next-generation modeling framework identified in
Chapter 3. The evaluation procedure defines four levels of support for a requirement:
(1) not recognized, (2) recognized, but not supported, (3) demonstrated, and (4)
conclusively demonstrated. The evaluation summary is given in Table 4.8.
The survey indicates that no existing approach fully satisfies the requirements for a
next-generation modeling framework. Of the approaches considered, the systems the-
oretic approaches rate highest, and generalized semi-Markov processes rate lowest.1
The requirement for an “unobtrusive conceptual framework” is viewed as least sup-
ported by the surveyed approaches, and is the area where the greatest strides can be
made.

10.1.4 Foundations

Nance’s Conical Methodology (CM) and Overstreet’s Condition Specification (CS),

which provide the basis for the majority of tasks comprising the research, are reviewed

in Chapter 5.

The Conical Methodology is a model development approach that is intended to provide

neither abstract nor concrete definitions of general systems. The CM adopts the view

that model development leads potentially to myriad evolutionary representations, but that

the mental perception is the initial representation for every model, and that assistance in

the area of mental perception, or conceptualization, is (should be) a critical aspect of any

1Note that the CM/CS, as evaluated in Chapter 5, receives the highest overall rating.
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modeling methodology. The CM identifies two processes in model development: (1) model

definition, during which a model is described in terms of objects and the attributes of those

objects, and (2) model specification, during which the attribute value changes are described.

The Condition Specification is a world-view-independent model representation designed

primarily to support analysis. The CS permits model behavior to be described in terms

of a set of conditions and a set of actions. An action may be paired with the condition

that causes it, forming a condition-action pair (CAP), or groups of actions with the same

condition may be formed into an action cluster (AC).

10.1.5 Model representation

The CS is most suited for the middle level of the hierarchy described in Chapter 3.

The extensions and modifications described in Chapters 6 through 9 are primarily directed

to widen the spectrum of the language, and thus provide support throughout the hierar-

chy. In Chapter 6, the CS provisions for model development, with respect to the CM, are

investigated. The research contributions from Chapter 6 are the following:

• Complete development of four models. To evaluate the pertinent model representa-
tion concepts, a complete development of four models is accomplished using the CM
and CS. These models are: (1) a multiple virtual storage batch computer system,
(2) a traffic intersection, (3) a system of colliding rigid disks, and (4) the machine
interference problem.

• New operations for the CS. The collection of primitives for the CS is extended to
support CM facilities for set definition. Operations defined are: insert, remove,

member, find and class.

• Redefinition of form for report specification. Overstreet does not prescribe a specific
form for the report specification, but instead indicates how the interface between the
report specification and the transition specification might be formed using a program
designed to compute statistics. A higher-level form for the report specification is
defined (see Figures 6.9 and 6.25).

• Definition of the concept of “augmented” object and transition specification. A transi-
tion specification need not contain any information regarding the collection of statistics
(as long as this information is captured in the report specification), however, if the
transition specification is to serve as a basis for a model implementation, then the ac-
tions required to facilitate statistics gathering – either “on-the-fly” or via logs – must
be incorporated into the transition specification. The concept of an “augmented” spec-
ification is outlined whereby the object specification and transition specification may
be automatically transformed to include the objects, attributes and actions necessary
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to provide statistics gathering. This transformation occurs as part of the movement
from specification to implementation.

• Definition of the concept of experiment specification. Similar to the need for an “aug-
mented” specification to capture the statistics gathering aspects of model behavior,
an experiment specification is proposed to capture details, e.g. the condition for the
start of steady state, necessary to produce an experimental model.

• Evaluation of object-based versus object-oriented. The object-oriented paradigm has
arguable advantages over traditional programming approaches for large systems (from
a software engineering perspective). The question is asked: from the point of view
of discrete event simulation model development, is a strict object-oriented approach
superior to the object-based perspective of the CM? The suggestion is that the very
constrained notions of method, and communication by message passing, may lead
to an unnatural description of systems. Thus, the less constraining object-based
perspective of the CM is viewed as superior in terms of discrete event simulation
model development.

10.1.6 Model generation

In Chapter 7, the extant methods to provide automated assistance in the generation of

a CS are reviewed. The model generation and related issues within the SMDE are surveyed.

Based on the model development lessons of Chapter 6, new directions for CM/CS-based

model generators are described. These new directions include: (1) AC-oriented develop-

ment, and (2) graphical front ends.

10.1.7 Model analysis and execution

In Chapter 8, issues in model analysis and execution are investigated. The research

contributions from Chapter 8 are the following:

• A semantics for the CS. In order to provide support for model implementation, the
semantic rules for the CS are reformulated. The reformulation includes interpretations
for: (1) CAP, (2) AC, and (3) sequence of ACs.

• Definition of direct execution of action cluster simulation. Based on a model of com-
putation provided by the ACIG, an implementation structure referred to as a direct
execution of action cluster (DEAC) simulation is defined. A DEAC simulation is
simply an execution of an augmented CS transition specification.

• Definition of minimal-condition DEAC algorithms. Figures 8.3 and 8.4 present algo-
rithms for DEAC simulations that are described as “minimal-condition.” Minimal-
condition implies that given a completely simplified ACIG as a basis, and using the
semantics for a CS mentioned above, the number of state-based conditions evaluated
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upon the execution of any given AC is minimal. Two algorithms are defined. Fig-
ure 8.3 illustrates the minimal-condition algorithm for a CS containing mixed ACs.
Figure 8.4 illustrates the minimal-condition algorithm for a CS without mixed ACs.

• Evaluation of new CS syntax and semantics on provisions for model analysis. Since
the primary purpose of the CS has been to facilitate model analysis, the new CS
syntax and semantics are evaluated with respect to the extant provisions for model
analysis in the CS. The evaluation indicates that only one analysis technique, action
cluster completeness, is affected by the expanded spectrum of the CS.

• Evaluation of multi-valued alarms. A potential source of ambiguity is identified in
the possibility of having a multi-valued alarm with a corresponding after alarm

statement. Static analysis cannot guarantee the correct use of the after alarm

construct, therefore a caveat should be provided to modelers regarding their use.

• Evaluation of CS as time-flow-mechanism-independent. One of the original goals for
the CS is time-flow-mechanism-independence. The failure of the CS in this regard
is demonstrated. The use of the alarm construct in a CS must reflect some view of
the passage of time (although not necessarily the implementation of time flow). We
postulate that this problem exists for any operational specification language.

10.1.8 Parallelizing model execution

In Chapter 9, some issues relating to discrete event simulation and parallel execution

are addressed. The research contributions from Chapter 9 are the following:

• Case study of parallel discrete event simulation. Parallel discrete event simulation
(PDES) research is evaluated from the modeling methodological perspective identi-
fied in Chapter 3. Differences are evident in two areas: (1) the enunciation of the
relationship between simulation and decision support, and the guidance provided by
the life cycle in this context, and (2) the focus of the development effort. Four recom-
mendations are made for PDES research to be reconciled with the “mainstream” of
DES: (1) return the focus of the development effort to the model, (2) formulate exam-
ples with enunciation of simulation study objectives, (3) examine methods to extract
speedup in terms of the particular model development approach and envisaged model
purpose, and (4) examine the relationship of speedup to software quality.

• Definitions for inherent parallelism. The concept of inherent parallelism is implicit
in the majority of PDES approaches, but has found explicit formulation within the
critical path literature. A new characterization, based on the time and state relation-
ships identified by Nance, is given. Two types of inherent parallelism are described:
(1) inherent event parallelism, which relates to the independence of attribute value
changes that occur during a given instant, and (2) inherent activity parallelism, which
relates to the independence of attribute value changes that occur over all instants of
a given model execution.

• Definition of the concept of ACIG expansion. Since action clusters provide the basis
for parallelism, the requirements of an implementation favor as many ACs as possible.
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An increased number of ACs yields more potential parallelism. The opposite is often
true, however, at the specification level. For a model specification in the CS, fewer
ACs generally equates to a more understandable communicative model. Conditions
are described by which ACs with quantified conditions may be expanded into a set
of ACs, thus producing an expanded ACIG, which provides the basis for a parallel
implementation.

• Synchronous model of execution. In a manner similar to Petri nets, we define a marking
on the ACIG as the distribution of tokens within the graph. Graph execution is
governed by the passing of tokens. Whenever a token is passed to an AC, the condition
on the AC is tested. If the condition evaluates to false, the token is consumed.
Otherwise, the actions of the AC are executed, a token is created and passed to each
of the state-based successors of the AC, and the token originally passed to the AC
is consumed. Whenever the situation develops that no tokens exist in the graph, the
earliest scheduled alarm (and all those with identical alarm times) is (are) removed
from the list of scheduled alarms, and a token is passed to the corresponding AC(s).
Execution begins by passing a token to the initialization AC and ends when the actions
of the termination AC are executed. The available parallelism at any point in (real)
time is defined by the number of tokens in existence in the graph at that time.

• Redefinition of time ambiguity and state ambiguity. Overstreet defines two types of
ambiguity: state ambiguity and time ambiguity. State ambiguity relates to a depen-
dency among simultaneously enabled contingent action clusters, and time ambiguity
relates to a dependency among simultaneously enabled determined action clusters.
New definitions for these terms are developed. The development includes characteri-
zations of two central elements: (1) action dependence, and (2) event-cluster. State
ambiguity is defined as the existence of dependent actions (and the absence of execu-
tion ordering information) within a single event-cluster, and time ambiguity is defined
as the existence of dependent actions among simultaneously enabled event-clusters.

• Formulation of a necessary condition for state ambiguity. The fundamental limitation
confronting the automated detection of ambiguity is an inability to statically deter-
mine action dependencies. Still, an ACIG may posses certain properties which tend
to indicate the presence of, or at least the possibility for, ambiguity. A necessary con-
dition for state ambiguity in a CS is formulated. The condition establishes that if a
CS is state ambiguous then two ACs exist such that they are in the same event-cluster
and either no directed path (in the ACIG) exists between the two ACs, or multiple
paths (in the ACIG) exist from the DAC defining the event-cluster to one of the ACs.
This condition is proved as Theorem 9.1.

• Definition of a critical path algorithm for PDEAC simulations. Based on Lin’s de-
velopment, a critical path algorithm for parallel direct execution of action cluster
(PDEAC) simulations is developed. The algorithm is an augmentation of the stan-
dard DEAC algorithm (defined in Chapter 8) and computes the synchronous critical
path for a given model representation. The algorithm is given in Figure 9.7, and its
proof of correctness established in Lemmas 9.1 and 9.2, and Theorem 9.2.

• Description of synchronous PDEAC algorithm. Based on the synchronous model of
execution, a PDEAC algorithm is described (Figures 9.8 and 9.9). The algorithm is
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complete but does not dictate a mechanism for detecting when the clock should be
updated. A suggestion is made for such a mechanism, but we note that the efficiency
of the mechanism hinges largely on the choice of implementation architecture and
language.

10.2 Evaluation

The research is evaluated with respect to the focused objectives identified in Chapter 1.

Objective 1. Identify an extensible framework for model development which
permits the integration of emerging technologies and approaches, and demon-
strate its feasibility using an existing methodology and representation form(s).

A set of requirements for a next-generation modeling framework, and an abstraction based

on a hierarchy of representations is given in Chapter 3. The framework and abstraction are

extensible in their provisions for both wide-spectrum and narrow-spectrum approaches. New

technologies are accommodated, and their influence encapsulated, at the implementation

level of model representation.

The Conical Methodology appears suitable to underly a next-generation modeling frame-

work. Much of the research described in Chapters 6 through 9 widens the spectrum of the

CS to support all three levels of representation described by the abstraction. Although many

issues remain unresolved, the feasibility of the framework, abstraction, and the CM/CS ap-

proach have been demonstrated. The research involving the CM/CS approach is assessed

with respect to gains in terms of the requirements for a next-generation modeling framework.

Requirement 1. Encourages and facilitates the production of model and study documenta-
tion, particularly with regard to definitions, assumptions and objectives.

A distinctive characteristic of the CM, the research makes no specific contribution in
this area.

Requirement 2. Permits model description to range from very high to very low level.

By defining primitives for set manipulation in the CS, higher level descriptions of
model behavior than previously possible may now be captured in the CS. For example,
descriptions of queueing behavior are simplified with the CS extensions.

Requirement 3. Permits model fidelity to range from very high to very low level.

Characteristic of an object-based model development approach, the research makes
no specific contribution in this area.
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Requirement 4. Conceptual framework is unobtrusive, and/or support is provided for mul-
tiple conceptual frameworks.

Although the CS is conceptual-framework-independent, working directly at the CS
level imposes a somewhat restrictive CF. Chapters 6 and 7 describe methods by which
models may be developed at high levels under a variety of CFs, and how such a model
description may be reflected in the CS.

Requirement 5. Structures model development. Facilitates management of model descrip-
tion and fidelity levels and choice of conceptual framework.

An important attribute of a model generator, the research makes no specific contri-
bution in this area.

Requirement 6. Exhibits broad applicability.

Through the complete development of the four disparate models in Chapter 6 – only
one of which, the machine interference problem, having been previously developed –
the research adds to the claim of the broad applicability of the CM/CS.

Requirement 7. Model representation is independent of implementing language and archi-
tecture.

The CS, designed as a simulation model specification language, has always been
implementation-language-independent. The development of Chapter 8 defines a close
relationship between the CS specification and an implementation through the DEAC
algorithm. Still, the model specification and model implementation are distinct. The
processes of augmentation (see Chapter 6) and expansion (see Chapter 9) define the
translation between the two forms.
In Chapter 9, the architecture-independence of the CS is established. The key here is
that a model developed only with concern to a natural description of system behavior
– to facilitate the establishment of model correctness – may be executed in a parallel
environment.

Requirement 8. Encourages automation and defines environment support.

This research is predicated on the recognition that environment support is integral to
the simulation modeling process, and as such is framed within the broader context of
the SMDE. Automated production of an implementation, and the automated exploita-
tion of inherent parallelism in a model representation are important contributions in
this regard.

Requirement 9. Support provided for broad array of model verification and validation tech-
niques.

A distinctive characteristic of the CS, the research makes only minor contributions in
this area, with a refinement of the CS semantics, and a reformulation of the notion of
ambiguity.

Requirement 10. Facilitates component management and experiment design.

A distinctive characteristic of the supporting environment, the research makes only
minor contributions in this area, with a refinement of the report specification and the
definition of the concept of the experiment specification.
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Objective 2. Recognize a potential problem with the focus of parallel discrete
event simulation research, and demonstrate how the framework described above
may be utilized to cost-effectively incorporate parallel execution within the
discrete event simulation life cycle.

In Section 9.1.4, PDES is examined from the modeling methodological perspective charac-

terizing this research, and found to be largely incognizant of the fundamental importance

and nature of decision support within DES. Recommendations are made such that this

problem may be addressed from the “PDES side.” The development regarding parallelizing

model execution within the CM/CS approach (Chapter 9) shows how the problem may be

addressed from the “DES side.” For any solution to be cost-effective, however, it must ex-

plicitly recognize the role of decision support. The framework and development abstraction

described in Chapter 3, and their realization in the CM/CS approach, seem well-suited in

this regard.

A final, and best, solution to the parallel simulation problem, no doubt will be achieved

by attacking the problem from both sides.

10.3 Future Research

Proper evaluation of the efficacy of the CM/CS approach requires additional work in

several areas. The most immediate need is for an environment in which the CM/CS can

be applied. While the SMDE initiated with a CM/CS-oriented configuration, this plat-

form has been abandoned in recent years in favor of the visual simulation methodology

supporting the DOMINO conceptual framework. The widened spectrum given the CS by

this research effort mandates a fresh look at a CM/CS-oriented SMDE. To this end, several

model representation issues must be addressed. CM-oriented event, activity and process

graphs should be defined such that these graphs may be constructed and transformed into

an ACIG. Provisions for looping constructs and multiple updates within a single action,

useful in high level specification, must be assessed relative to their expression at the CS

level.

Within the realm of model execution, several questions remain unresolved. Three ver-

sions of the minimal condition DEAC algorithms have been coded (in Pascal, C and C ++)

to validate the algorithms. The MVS model is implemented and the results correspond to

the known values. The remaining models must be implemented. To realize the CM/CS en-
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vironment, rules for translating a CS into an implementation (compilable) language must be

established, i.e. a grammar for the CS must be defined and a CS compiler constructed. The

unresolved issues noted in Chapter 9 must also be addressed within the context of a CM/CS

environment. Primary among these are: (1) defining methods to resolve contention for the

alarm list in a synchronous PDEAC simulation, (2) investigating action-level parallelism,

and (3) defining a suitable method for handling CS functions. Models for asynchronous

PDEAC should also be investigated.

Most of these issues are simply matters of construction, experimentation and interpre-

tation that are not likely to enable methodological breakthrough. Nonetheless, they are

important in the transfer of technology from research speculation to accepted practice.

Several “grand challenges” are evident in this line of investigation, however. Perhaps the

most interesting open question is that when an upper bound on model execution speed is

a defined requirement for a simulation study, and the inherent parallelism of a model rep-

resentation is insufficient to meet that upper bound, can automated assistance be defined

to lead the modeler into a reformulation of the model such that the inherent parallelism is

sufficiently increased? Such a capability is clearly needed if an ideal framework for discrete

event simulation modeling is to be defined.
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Appendix A

LIFE CYCLE COMPONENTS

The definitions presented here are adapted largely from [16, 17, 20].

A.1 Phases

The phases of the life-cycle model in Figure 3.2 generally fall into three groupings:

problem definition phases (communicated problem, formulated problem, proposed solution

technique, system and objectives definition), model development phases (system and objec-

tives definition, conceptual model, communicative models, programmed models, experimen-

tal models, simulation results), and decision support phases (simulation results, integrated

decision support). Each phase is briefly described below.

Communicated Problem. The problem that is to be solved in its most elemental sense is
the communicated problem.

Formulated Problem. The problem is stated such that a decision can be made regarding
the most viable and cost effective method of solution to apply.

Proposed Solution Technique. Here we assume simulation is proposed as the most cost
effective method of solution to the formulated problem.

System and Objectives Definition. Once simulation is proposed, the system that is to be
modeled is defined and the objectives of the simulation delineated.

Conceptual Model. The conceptual model is the model that exists in the mind(s) of the
modeler(s). In all likelihood, it is incomplete and ambiguous, and constantly in flux.

Communicative Model. A communicative model, or model specification, is a model that
exists in some form such that it can be presented to persons other than the modeler and
subjected to prescribed verification and validation techniques.
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APPENDIX A. LIFE CYCLE COMPONENTS

Programmed Model. The programmed model is an executable representation equivalent
to the communicative model (or models) in some high level general purpose, or simulation
language. The language chosen is suitable for the machine(s) on which the program is to
be executed.

Experimental Model. The programmed model is instrumented to facilitate a particular
purpose of investigation. This instrumented model is the experimental model.

Model Results. Model results are produced by execution of an experimental model on a
given machine(s).

Integrated Decision Support. The model results are presented to decision makers who pro-
pose action based on these results. (Note that these decisions may have no relation to the
validity of the model or its results.)

A.2 Processes

The processes of the life-cycle model indicate how progress from one phase to another

should be made.

Problem Formulation. The process by which the initially communicated problem is trans-
lated into a formulated problem sufficiently well defined to enable specific research action.

Investigation of Solution Techniques. Determine if a solution can best be derived analyti-
cally, by numerical approximation, or simulation. The technique applied should yield a low
cost/benefit ratio.

System Investigation. Examine the system for: (1) change, (2) environment, (3) counter-
intuitive behavior, (4) drift to low performance, (5) interdependency, and (6) organization.

Model Formulation. The process by which the conceptual model is envisioned to represent
the system under study.

Model Representation. Translating the conceptual model into communicative models using
established specification techniques and languages.

Programming. Translating the specification into a high level programming language or
simulation programming language representation that can be compiled and executed on a
computer.

Design of Experiments. The process of formulating a plan to gather the desired information
at minimal cost to enable the analyst to draw valid inferences.
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Experimentation. The process of experimenting with a model for a specific purpose.

Redefinition. Changing the model to facilitate some new understanding/representation of
the system.

Presentation of Model Results. Model results are interpreted and presented to the decision
makers for their acceptance and implementation.

A.3 Credibility Assessment Stages

Formulated Problem VV&T. Substantiation that the formulated problem contains the ac-
tual problem in its entirety and is sufficiently well structured to permit the derivation of a
credible solution. (This can be determined via questionnaire.)

Feasibility Assessment of Simulation. Is simulation cost effective? Can the study be ac-
complished under given time constraints? Are the required resources available/obtainable?

System and Objectives Definition VV&T. Expert knowledge must be applied to assess the
accuracy and validity of system definitions and objectives.

Model Qualification. Justify all model assumptions with regard to the study objectives.

Communicative Model VV&T. Confirm the adequacy of the model specification. Use:
desk checking/walkthroughs, graph-based analysis, proof of correctness, prototyping, etc.

Programmed Model VV&T. Confirm the adequacy of the simulation program. Use: func-
tional testing, instrumentation-based testing, scree testing, etc.

Experimental Design VV&T. Are the random number generators used good ones? Are
they being applied properly (common random numbers, etc.)? Are proper statistical tech-
niques being applied?

Data VV&T. Assess (1) model input data, (2) model parameter data.

Experimental Model VV&T. Substantiate that the experimental model, within its domain
of applicability, behaves with satisfactory accuracy consistent with the study objectives.
(Compare model behavior to system behavior using event validation, hypothesis testing,
turing tests, confidence intervals, etc.)

Credibility of Model Results. Statistically validate the model results (as well as the model
itself).
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Presentation VV&T. Verify the presentation of model results before presentation for ac-
ceptability assessment. Four criteria: (1) interpretation of model results, (2) documentation
of the simulation study, (3) communication of model results, and (4) presentation technique.

Acceptability of Model Results. This is an attribute of the decision makers or sponsors.
(Hard to verify, but adherence to the life-cycle should produce acceptable results with high
probability.)
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SMDE TOOLS

B.1 Project Manager

The Project Manager is a software tool that: (1) administers the storage and retrieval of

items in the project database; (2) keeps a recorded history of the progress of the simulation

modeling project; (3) triggers messages and reminders; and (4) responds to queries (in a

predescribed form) concerning project status.

B.2 Premodels Manager

The Premodels Manager administers the reuse of previously developed models (or model

components). Two Premodels Manager prototypes have been developed [28, 37].

B.3 Assistance Manager

The Assistance Manager provides: (1) information on how to use any of the SMDE

tools; (2) a glossary of technical terms; (3) introductory information about the SMDE; and

(4) assistance for tool developers in supplying “help” information. Frankel [75] describes

the Assistance Manager prototype.

B.4 Command Language Interpreter

The Command Language Interpreter (CLI) is the language through which a user invokes

an SMDE tool. Early prototypes are described by [107, 150]. The graphical user interface

provided by the Sun workstation currently serves as the CLI within the SMDE.
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B.5 Model Generator

The Model Generator assists the modeler in: (1) creating a model specification in

a predetermined analyzable form; (2) creating stratified model documentation; and (3)

performing model qualification i.e. are the model assumptions acceptable with regard

to the model objectives. The Model Generator has been at the focus of most of the

research activity within the SMDE. Five Model Generator prototypes have been devel-

oped [25, 32, 66, 96, 182].

B.6 Model Analyzer

The Model Analyzer diagnoses the model specification produced by the Model Gener-

ator and effectively assists the modeler in communicative model verification. Four Model

Analyzer prototypes have been created [66, 151, 194, 238].

B.7 Model Translator

The Model Translator translates the model specification into an executable representa-

tion after the quality of the specification is determined (and assured) by the Model Analyzer.

Model Translators have been built to accompany the two Model Generators [32, 66].

B.8 Model Verifier

The Model Verifier performs programmed model verification. It provides assurance that

the simulation model is programmed from its specification with “sufficient” accuracy. To

date, one Model Verifier prototype has been developed [66].

B.9 Source Code Manager

The Source Code Manager configures the run-time system for execution of the pro-

grammed model, providing the requisite input/output devices, files, and utilities.
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B.10 Electronic Mail System

The Electronic Mail System facilitates the necessary communication among project

personnel by controlling the sending and receiving of mail through computer networks.

B.11 Text Editor

The Text Editor is used for preparing technical reports, user manuals, system documen-

tation, correspondence, and personal documents.
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GOLDBERG’S COLLIDING PUCKS ALGORITHMS

CushionBehavior(messages,CushionState)

Eliminate pairs of messages that cancel each other

for all messages do

case (message type)
NewVelocity:

identify sender of NewVelocity message as ball X

cancel any planned collision with ball X

if (the time of a collision with ball X > the current time) then

schedule a collision with ball X
add the collision to the set of planned interactions

endif

Collision:

identify sender of Collision message as ball X

remove ball X from the set of planned interactions
endcase

end

endprogram

Figure C.1: Goldberg’s Algorithm for Cushion Behavior.
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BallBehavior(messages,BallState)

Eliminate pairs of messages that cancel each other
CollisionHasOccured← False

For all messages do

case(message type)

NewVelocity:

identify sender of NewVelocity message as ball X
if (this ball is not in a pocket) then

cancel all planned collisions with ball X

if (the time of a collision with ball X < the current time) then

schedule a collision with ball X

add the collision with ball X to the set of planned interactions

endif
endif

Collision:

identify sender of Collision message as object Z

CollisionHasOccured← True

case(object type of object Z)
Ball: BallState:velocity← BallCollision(BallState:trajectory, Ball Z’s trajectory)

Cushion: BallState:velocity← CushionCollision(BallState:trajectory, cushion Z’s position)

Corner: BallState:velocity← CornerCollision(BallState:trajectory, corner Z’s position)

Pocket: BallState:pocket← pocket Z

endcase
BallState:trajectory:position← current position

BallState:trajectory:fix time← current time

remove the collision from the set of planned interactions

endcase

end

if (CollisionHasOccured) then
cancel all planned interactions

empty the set of planned interactions

for all other balls do

send a NewVelocity message to the ball

for all cushions do
send a NewVelocity message to the cushion

for all pockets do

send a NewVelocity message to the pocket

for all corners do

send a NewVelocity message to the corner
endif

endprogram

Figure C.2: Goldberg’s Algorithm for Pool Ball Behavior.
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BallBehavior(messages,BallState)

Eliminate pairs of messages that cancel each other

Order messages by priority

/* Even if there are several collisions, only one VelocityChange message needs to be sent */
CollisionHasOccured← False

for all messages do

case (message type)

NewVelocity for ball X:

cancel all collisions with ball X
if (the time of a collision with ball X > the current time) then

schedule a collision with ball X

add ball X to the set of planned interactions

endif

Collision with ball X:

CollisionHasOccured← True
update this ball’s trajectory

remove ball X from the set of planned interactions

SectorEntry:

add the sector to the set of occupied sectors

SectorDeparture:
remove the sector from the set of occupied sectors

endcase

end

if (CollisionHasOccured) then

cancel all planned interactions

empty the set of planned interactions
for all sectors the ball occupies

send a VelocityChange message to the sector

end

endif

endprogram

Figure C.3: Goldberg’s Algorithm for Ball Behavior in Sectored Solution.
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SectorBehavior(messages, SectorState)

Eliminate pairs of messages that cancel each other
Order messages by priority

for all messages do

case (message type)

VelocityChange from ball X:

for all adjacent sectors
send the sector a NewVelocity message for ball X

end

for all balls in this sector

if (ball �= ball X) then

send the ball a NewVelocity message for ball X

endif
end

cancel any planned interaction with ball X

NewVelocity for ball X:

if (ball X is not in the sector) then

cancel any planned interaction with ball X
if (the ball will enter the sector on its new trajectory) then

schedule a SectorEntry

add the ball to the set of planned interactions

endif

endif
SectorEntry for ball X:

for all adjacent sectors

send the sector a NewVelocity message for ball X

end

for all balls in this sector

send the ball a NewVelocity message for ball X
end

add ball X to the set of balls in the sector

remove the interaction with ball X from the set of planned interactions

SectorDeparture for ball X:

remove ball X from the set of balls in the sector
remove the interaction with ball X from the set of planned interactions

endcase

if (message type = VelocityChange or message type = SectorEntry) then

if (the velocity of ball X �= 0) then

schedule a SectorDeparture for ball X
add ball X to the sector’s set of planned interactions

endif

endif

end

endprogram

Figure C.4: Goldberg’s Algorithm for Sector Behavior.
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MVS TRANSITION SPECIFICATION
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TI TRANSITION SPECIFICATION
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PUCKS TRANSITION SPECIFICATION
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MIP TRANSITION SPECIFICATIONS
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